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I. A Cartesian Background 

In his Fourth Meditation and in some letters Descartes presents a 
theory of judgement in which the reference to the limitations of our 
knowledge plays an essential role. The picture he suggests is the 
following. 

Each of us is provided with a restricted perspective from which he can 
get only partial information about the world. We can imagine expanding 
this perspective to a wider one (so that more things are known), then to 
another one, and so on. But each of these states of information is in 
essence limited; it cannot coincide with God's point of view (where 
everything is either  true or  false in a definite way), because at each step 
only a finite amount of information is added. Moreover, at any step it is 
possible that some judgements  assumed as true turn out to be false, in 
view of the expansion of knowledge. So the question is: how to 
"restrain" the faculty of judging within the limits of evident or certain 
ideas, if there is no guarantee about the persistence of judgements, no 
obvious way of telling what is really certain (and therefore true) from 
what is only assumed to be such? Now, my opinion is that the Cogito 



2 
 

argument is supposed to give a sample of evidence which presents, 
according to Descartes, a guarantee of persistence1. 

But this is not the point on which I am going to concentrate. For the 
present purpose it is enough to emphasize two features of the Cartesian 
theory of judgement: (i) the opposition between the "completeness" of 
God's perspective (where, so to speak, a principle of epistemic bivalence 
holds: for every statement A, either A is known to be true or A is known 
to be false) and the "narrowness" of our segments of information; (ii) the 
requirement that certainty entails persistence through increasing segments. 
In the next section I shall try to show that neglecting this requirement is 
one of the causes which give rise to Gettier's problem. 

 
II. Gettier's problem: a diagnosis 

The necessary and sufficient condition for the truth of a sentence of 
the form: 

(1) s knows that A 
is often given in terms of the following clauses: 

(2) (i) A is true 
 (ii) s believes that A 
 (iii) s is justified in believing that A. 

Now, Gettier's problem shows that what (2) expresses is only the 
necessary condition for the truth of (1): (2) is not in itself strong enough 
to also supply the sufficient condition, unless the concept of justification 
is properly specified. Here is one of the two counterexamples  discussed 
by Gettier2. 

                                                 
1 An analysis of the Cogito argument from this point of view is presented in Bonomi 
(1990). 
2 See Gettier (1963). 
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Suppose that s has some good reasons to be convinced of the truth 
of: 

(3) t is the so-and-so 
(3') t is P.      
 
Therefore s is apparently  justified in believing that: 

(4) The so-and-so is P. 

But suppose also that actually t' — not  t — is the so and so and that 
t' is P, although s is completely in the dark about this3. Then we have: (4) 
is true (even if (3) — from which s inferred (4) — is false); s believes that 
(4) is true; and, finally, s seems to be justified in believing that (4) is true. 
So, according to (2), it would be true that s knows that the so and so is 
P, which is absurd, for s has no reliable information about it: what he 
relies on is  only a mistaken basis of inference. 

We must then wonder why, without suitable qualifications, (2) is 
inadequate. And the answer I suggest is that the concept of justification is 
too vague. How can we make it more definite? Well, let us look at the 
very structure of (2). If for the time being we disregard (iii) — which 
refers to the notion to be clarified —, the remaining points indicate two 
possible directions of inquiry. As a matter of fact, (i) has to do with the 
way in which s's knowledge is supported by relevant facts. And plain 
truth is the proposed requirement. On the other hand, (ii) appeals to the 
subject's beliefs. The problem is that (2) says nothing interesting from 
either point of view: truth (in (i)) is a very rough requirement (since our 
beliefs can be true by mere accident). And the same holds of the 
requirement in (ii), for no reference is made to the inferential structure of 
s's system of beliefs. Due to this coarseness on both sides, such a 
definition as (2) can give rise to different kinds of predicaments. And my 
                                                 
3 As a matter of fact s might even not to know that t' exists. 
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idea is that behind the so-called Gettier's problem, in its countless 
versions, there actually lurk different (although correlate) problems. And, 
perhaps, different kinds of solution must be searched for. 

In what follows I shall deal with the question of "external" adequacy 
raised by (i). The reason of this choice is that in Gettier's original puzzle, 
that I have just summarized, the deduction made by s is perfectly sound. 
No failure can be detected in the inferential structure of his / her system 
of beliefs. So the problem lies completely on the side of (i), for it has to 
do with the information the subject has about the current state of the 
world. 

I shall try to solve this problem by referring to a more "fine-grained" 
notion of truth which accounts for the pieces of evidence available to s. 
In this way a solution of Gettier's puzzle can be found independently of 
any consideration about the inferential requirements which s's system of 
beliefs has to meet. (Yet a reference to these requirements is needed to 
cope with more sophisticated versions of the puzzle4.) 

The concept of local truth I am going to introduce is not the classical 
one (as in 2.i), but it is strong enough to guarantee persistence through 
increasing segments of information, which was mentioned in the previous 
section as a possible criterion of justifiability. That concept will be 
formalized in the next section. For the time being let us consider again 
Gettier's example. Suppose then that the point of view from which s sees 
the world is just a little bit richer and that the only additional information it 
incorporates is the truth of  

(5) t and the so-and-so are different individuals. 

It is plausible to argue that in such circumstances s would not believe 
that the so-and-so is P, for he could not believe that t and the so-and-so 
are the same individual, which was an essential premise of the inference at 

                                                 
4 In formal terms this means that a proper system of axioms should be introduced not only 
for the truth-operator 'T' (see sect. V), but for the operator 'B' as well. 
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issue. So, what happens is that, in this case, believing that the so and so 
is P is not preserved through growing segments of  information. In other 
words, the condition which is not satisfied here is the persistence, in any 
better state of knowledge, of the reasons supporting s's judgement. And 
that this condition is an essential part of our intuitive characterization of 
knowing is wittnessed by the oddness of: 

(6)? I know that A, but A might be false. 

What is not acceptable in (6) is the idea that, with more information 
available, we can give up something we know. This is what is missing in 
(2), where the truth-condition for 's knows that A' does not entail the 
requirement of persistence. But it is time to see what kind of formal 
treatment can suit the main ideas I have been expounding. 

 
III. Segments of information 

Since the problems we are dealing with are independent  of the 
iteration of such epistemic operators as 'B' and 'J', to simplify things we 
shall assume that in our formal language  LJ these operators apply only to 
formulas in which they do not occur5, that is formulas of a standard first-
order language L. 

So let L be any first-order language with a denumerable set C of 

individual constants. '¬', '�' are its primitive connectives, and '(∀x)' 
(where 'x' stands for an individual variable) its universal quantifier. The 
notion of well-formed formula (wff) of L is defined inductively by the 
usual rules. 

Now, assuming that T is the set of the terms of L (individual variables 
and constants, in our case), let LJ be an extension of L which is 
characterized by the following additional rule: 

                                                 
5  P. Casalegno has extended this semantic framework to the case of iterated operators. 
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If s�T and A is a wff of L, then B(s,A), J(s,A) are wffs of LJ. 

Associated to such a language as L is the usual notion of (first-order) 
L-model, i.e.  a pair M=<D,I>, where D is a domain of entities and I a 
function such that I(t)�D if t is an individual constant and Dn€I(Pn) if Pn 
is a predicate letter (for every n=1). If M=<D,I> is such a model, a 
submodel of M is any pair µ=<D,Iµ>, such that, for every individual 
constant t, Iµ(t)=I(t)  and, for every predicate letter Pn,  Iµ(Pn)=<X,Y>, 
where I(Pn)€X , Dn\I(Pn)€Y (that is, Y is  a subset of  the complement  
of I(Pn): therefore X↔Y=ø  and Dn€X≈Y ; if Dn?X≈Y for some 
predicate Pn such that Iµ(Pn)=<X,Y>, µ  will be said to be a proper 
submodel of M). From now on X and Y will be designated respectively 
by 'Iµ

+(Pn)' (the "extension" of Pn in µ ) and 'Iµ
-(Pn)' (the 

"counterextension" of Pn in µ ). Let M be the set of the  submodels of M 
and = the  relation  on M such that µ=ν  iff, for any  Pn, Iν

+(Pn)€Iµ
+(Pn) 

and Iν
-(Pn)€Iµ

-(Pn). Notice that = is a partial order with a least element 
(which is the submodel where both the extension and the 
counterextension of every predicate letter are empty) and a greatest one 
(where, for every predicate letter, its extension and its counterextension 
cover the entire domain; this submodel is M itself). In fact, <M,=> is a 
lattice: for every µ ,ν�M, their join is the submodel σ such that, for 
every predicate Pn, the extension of Pn in σ is the union of the extensions 
of Pn, respectively, in µ  and ν , whilst the counterextension of Pn in σ is 
the union of the counterextensions. (To get the dual definition of the meet 
of µ  and ν , replace union by intersection.) This lattice is determined by a 
Boolean algebra <M,0,1,*,≈,↔>, where:   

0 and 1 are respectively the least element and the greatest element 
described above; 
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µ* (the complement of µ ) is the submodel such that, for every Pn, the 
extension of Pn in µ* is I(Pn)\Iµ

+(Pn), and its counterextension is 
(Dn\I(Pn))\Iµ

-(Pn); 
µ≈ν  is the submodel  described as the join of µ  and ν ; 
µ↔ν  is the submodel described as the meet of µ  and ν . 

Given the extended language LJ, a model MJ for LJ is a structure 
<M,P,[ ] ,Φ ,F>, where: 

(i) M = <D,I> is a standard (first-order) L-model (M is the set of its 
submodels, in the sense defined above); 

(ii) P is the set of propositions6; 
(iii) [ ] is a function from the set of wffs of L to the set  P of 

propositions. So if A is a wff of L, [A] is the proposition associated with 
it; 

(iv) Φ  is a function from D to M That is, Φ  assigns to each7 
individual u a submodel µ  in M. When µ=Φ (u), µ  is called a local 
structure for u; µ  represents the segment of information (about the 
complete model M) available to u.  

(v) F is a function from D to the power set of P. In other terms, F 
assigns a set of propositions to each individual u in D. 

                                                 
6 For our purposes it is not essential to determine what propositions are. In a suitable 
property theory they might be 0-place relations (in intension). Roughly speaking, if A is a 
wff and p a sequence of (occurrences of) variables, '[A]p' is a term which denotes a 
property if p is a sequence of a single (occurrence of) variable, a binary relation if p is 
sequence of two (occurrences of) variables, etc. So [A] (with p empty) would denote a 0-
place relation. This notation will be used to designate propositions (in the semantic 
metalanguage). 
7 It would be more natural to restrict the domain of Φ  (and of F also) to the set of 
individuals that can have intentional attitudes. But this modification is not relevant here. 
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As to the intuitive justifications of such a framework, we can conceive 
the standard first-order model M as a complete picture of a certain state8 
of the world. As specified in (iv), a partial submodel µ  in M can be 
assimilated to a segment of information about this state of the world M. 
Notice that, since all the submodels have the same domain D (i.e. the 
domain of the complete model M), partiality, here, is treated in terms of 
lack of local information about individuals, rather than in terms of their 
possible "inexistence" in local domains9. Every epistemic subject s is 
linked, through Φ , to a local structure Φ (s)=µ , where µ  (a submodel of 
M) is the segment of information available to s. Finally, F specifies the 
set of beliefs10 that  s has in the given state of the world. 

 
IV. A minimal system  

In order to reconstruct Gettier's paradox from a formal point of view, 
I shall start from a very weak system, where the truth of 's knows that A' 
is simply defined in terms of the truth of A (as in (2.i)) and the truth of 's 
believes that A' (as 2.ii)). The paradox will be removed by replacing (2.i) 
with a stronger condition, which is incorporated into the formal system 
of sect. 5. 

                                                 
8 At some given instant. For the sake of simplicity, time is left aside in the present 
framework. Local structures must be conceived as representing increasing information 
about a single  state of the world. 
9 But in a different approach, which is of course possible, the domains of the submodels 
can be proper subsets of the "absolute" domain D. 
10 No restriction is imposed here on F with respect to µ. But, for example, it would be 
quite natural to require, by suitable axioms, that, given a local structure Φ (s)=µ, if A 
expresses a simple state of affairs which obtains in µ, then [A]�F(s) (so that it turns out to 
be true that s believes that A). Or to impose that F(s) be closed, e.g., under conjunction 
(so that if [A]�F(s) and [B]�F(s), then [A�B]�F(s). The point is that, in the present 
paper, my purpose is not to propose a proper axiomatization for the belief-sentences, but 
only to analyze the relations between beliefs and guaranteed justifiability. See sect. IV and 
V. 
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Coming now to the formal definitions, let MJ=<M,P,[ ],Φ ,F> be a 
model for the language LJ (where M=<D,I> is a standard first-order L-
model), and µ  any submodel in M. Furthermore, let a be an assignment 
of values in D to the individual variables (whilst au

x 
is the assignment such 

that au
x
(x)=u and au

x
(y)=a(y) if y is distinct from x,  where u�D). Finally 

let E be a mapping of the terms into the domain D such that E(t)=a(t) if t 
is a variable and E(t)=I(t) if t is a constant. We shall define now what it 
means for a wff A (of L) to be validated (respectively, invalidated) in µ  
by a - in symbols: µ ,a ||—  A (resp. µ ,a  —|| A) -, and what it means for 
a wff A (of the extended language LJ) to be satisfied in MJ  by a - in 
symbols: MJ,a ||—  A. 

µ ,a ||—  Pn(t
1
,...,t

n
) iff <E(t

1
),...,E(t

n
)>�Iµ

+(Pn)       

µ ,a —|| Pn(t
1
,...,t

n
) iff <E(t

1
),...,E(t

n
)>�Iµ

-(Pn) 

µ ,a ||—   ¬A iff µ ,a —|| A  

µ ,a  —|| ¬A iff µ ,a ||—  A 

µ ,a ||—  A � B iff µ ,a ||—  A  and  µ ,a ||—  B 

µ ,a  —|| A � B iff µ ,a  —|| A or µ ,a  —|| B 

µ ,a ||—  (∀ x)A iff µ ,au
x  ||—  A for every u�D 

µ ,a  —|| (∀ x)A iff µ ,au
x
 —|| A for some u�D 

MJ,a  ||—  Pn(t
1
,...,t

n
)
 
iff <E(t

1
),...,E(t

n
)>�I(Pn) 

MJ,a  ||—  ¬A if not MJ,a  ||—  A 
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MJ,a  ||—  A � B iff MJ,a  ||—  A  and  MJ,a  ||—  B 

MJ,a  ||—  (∀ x)A iff MJ,au
x  ||—  A for every u�D      

MJ,a  ||—  B(s,A) iff [A]�F(E(s))  (i.e., iff [A] belongs to the set of 
propositions F assigns to the individual denotated by 's') 

MJ,a  ||—  J(s,A) iff MJ,a  ||—  A and MJ,a  ||—  B(s,A). 

(Notice that the last clause — which gives the truth-condition 
concerning the operator 'J' — makes no reference to local structures11.) 

A wff A of L is validated (resp. invalidated) by the submodel µ  - in 
symbols: µ  ||—  A (resp. µ  —|| A) - iff µ ,a ||— A (resp. µ ,a  —|| A) for 
every assignment a. Moreover a wff A of the extended language LJ is true 
(resp. false) in the model MJ - in symbols:  MJ ||— A (resp. MJ —|| A) - 
iff MJ,a ||—  A for every (resp. no) assignment a. Finally, A is valid (in 
symbols: ||—  A) iff MJ ||—  A for every model MJ. It is easy to prove 
that, since MJ can be seen as a "total" evaluation function, for every 
sentence A of LJ either MJ ||—  A or MJ —|| A (whilst there are local 
structures µ  and sentences A such that neither µ  ||—  A nor µ   —|| A). 

Assuming some standard axiomatization of the predicate calculus 
(PC), let us now consider a very weak theory TJ whose axioms are all the 
wffs of LJ which are either axioms of PC or of one of the following 
forms: 

                                                 
11 This means that the semantics illustrated in the present section makes an empty  use of 
the set of submodels. (So, by omitting Φ , a model MJ might be defined as a structure 
<M,P,[ ],F>.) 
    Yet submodels are introduced at this early stage in order to present the semantics of 
sect. V as an extension of the structure defined here. Thus, suitable comparisons will be 
made possible thanks to this unified framework. 
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(A1) J(x,A) ∅ A              
(A2) J(x,A) ∅ B(x,A)            
(A3) A � B(x,A) ∅ J(x,A)12. 

The soundness of TJ can be proved easily. The axioms and rules of 
PC will be ignored since the models for LJ behave classically with 
respect to PC. So only (A1)-(A3) will be considered. On the other hand, 
that (A1)-(A3) are valid follows immediately from the truth-conditions for 
'J(s,A)'. 

The completeness proof is omitted. 
 
V. Removing the inadequacy: certainty as local truth 

In the simple example of sect. II the situation is roughly the following: 

(i) s is convinced of the truth of sentences A and B. 
(ii) C is an immediate consequence of A and B. 
(iii) Because of (i) and (ii), s believes that C. 
(iv) A is false. 
(v) C is true. 

In such circumstances, we said, it would be questionable to evaluate 
the sentence 

(*) s knows that C 
as true. Now, this is exactly what happens in the semantics I have just 
presented. According to the relevant definition, (iii) and (v) are a 
sufficient condition for the truth of (*). So our problem is to present a 
semantics (in the same framework as before) where the notion of 
                                                 
12 In view of further developments, the different principles are kept separate. But a single 
axiom (expressing this minimal view) would  of course be sufficient here: 
J(x,A)  ×  A�B(x,A). 
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(justified) knowledge is more restrictive. As a result, in the circumstances 
(i)-(v), (*) would be falsified in a principled way. 

Our analysis will rest on the following remark: in the semantics of sect. 
IV the submodels in M (or local structures, as we called them) are an 
unexploited resource. They are not mentioned in the truth-condition 
concerning the epistemic operator 'J'. How they can play a significant 
role is shown by a new reflection on Gettier's example in terms of the 
present theoretical framework. 

Statements (i)-(v) depict a situation where the subject s has some 
(possibily erroneous) beliefs and a set of certainties13 about the world. In 
terms of our semantics, this set is simulated by µ  (a partial submodel of 
the complete model M). Now, coming back to Gettier's example, C 
cannot be counted among the propositions validated by µ , i.e. the 
propositions whose truth is ascertainable on the basis of the data 
available to s. It will be remembered that the reason why s feels 
committed to the truth of C (i.e. the sentence 'The so-and-so is P') is that 
s assumes the truth of A, and C is an immediate consequence of A (and 
other assumptions). But A, in its turn, cannot be validated by µ . So we 
have: 

(a) M ||—  C; (b) not µ  ||—  C. 

(a) says that C is true, whilst (b) specifies that C is not validated by s's 
segment of information: more exactly, that it is not true in µ  (which does 
not mean, of course, that C is false in µ ). This is the critical point 
disregarded by the truth-condition for 'J' given in sect. IV. 

The argument presented at the outset is an instructive one from this 
point of view. Let us resume it briefly in terms of the formal notions at 
issue. Suppose that ν is like µ  (s's segment of information), but with the 
additional information that A is false (i.e. µ<ν  and ν  —|| A). Now, if s 
                                                 
13 In the present context, 'to be certain' is treated as a "factive" predicate  That is, if I have 
the certainty that P, P is true. In the same way, 'information' means  truthful information. 
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were in the segment, he/she would question the truth of C (for A, whose 
truth was believed to entail the truth of C, turns out to be false) and the 
persistence of s's epistemic attitude towards C would be lost. But in the 
sense I have in mind, s is justified in saying 'I know that C', given his / 
her segment of information µ , only if no larger segment ν  would lead s 
to change her / his view: i.e. only if µ  is already rich enough to validate 
C. 

As to the truth-condition we have to modify in our semantics, the 
requirement which is to be specified is that C be validated in the partial 
submodel µ  (i.e. the subject's segment of information). In other terms, in 
the recursive definition of sect. IV, the old clause concerning the 
operator 'J' must be replaced by the following: 

(K)   MJ,a  ||—  J(s,A) iff µ ,a  ||—  A and MJ,a  ||—  B(s,A), where 
µ=Φ (E(s)) (i.e., µ  is the submodel in M that Φ  assigns to the individual 
denotated by s). 

It is easy to see that, with this new definition, (A3) is no longer valid. 
(To falsify it, think of a situation where s believes that A, A is true, but A 
is not true in s's segment of information µ . As expected, the situation 
described by Gettier is the case in point!) 

In our example, since C is not validated by the relevant segment of 
information, (*) turns out to be false in the circumstances described by 
(i)-(v), which is the intuitive outcome we pursued. So, the crucial notion 
is: being validated in the subject's segment of information or, in terms 
of our semantics, being true in the relevant local structure.This notion of 
local truth can be axiomatized in different ways14. I intend to choose one  
that involves a new operator. The extended language which is to be used 
is the same as LJ except for this new formation rule: 

                                                 
14 P. Casalegno has given a complete set of axioms for this notion in the language LJ itself, 
i.e. without new operators. 
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If s is a term and A is a wff of L, then T(s,A) is a wff. 

That is, like 'J' and 'B', 'T' applies to a term s and to a formula A of the 
given first-order language (i.e. a formula without15 occurrences of 'J', 'B' 
and 'T' itself) to generate the formula 'T(s,A)'. The intuitive meaning of 
such a formula is: A is true in the submodel assigned to s, A is validated 
by the subject's local structure. Formally, given a model MJ=<M,P,[ 
],Φ ,F>, the relevant truth-condition that is to be added is the following: 

(CT)  MJ,a ||— T(s,A) iff µ ,a ||— A, where µ=Φ (E(s)) (i.e. µ  is the 
submodel in M that Φ  assigns to the individual denotated by s). 

In this extended language, the truth-condition (K) concerning the 
operator J can also be expressed in the following terms: 

(K')   MJ,a ||—  J(s,A) iff MJ,a ||—  B(s,A) and MJ,a ||—  T(s,A). 

Here is a complete set of axioms for this modified semantics. The first 
one accounts for the new truth-condition (K'): 

(B1)   J(x,A) × B(x,A) � T(x,A). 

A second axiom is connected with the monotonicity of the partial 
semantics determined by the local structures in M: if a sentence of L  
turns out to be true in a submodel (assigned to any individual s), it will be 
true in every larger submodel, in particular in M itself (the "complete" 
given model). This axiom is: 

(B2) T(x,A) ∅ A.    

                                                 
15 The reason of this simplification is, once more, that the iteration of the epistemic 
operators is not considered here, although an extension of the present framework in this 
direction is available. 
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The remaining axioms express necessary and sufficient conditions for 
evaluating formulas in local structures (using negation, conjunction and 
universal quantification as primitive): 

(B3) T(x,A�B) × T(x,A) � T(x,B) 

(B4) T(x,¬(A� B)) × ¬(¬T(x,¬A) �  ¬T(x,¬B)) 
(or, equivalently: T(x,A∆B) × T(x,A) ∆ T(x,B)) 
(B5) T(x,¬¬A) × T(x,A) 
(B6) T(x,(∀y)A) × (∀y)T(x,A) 
(B7) T(x,¬(∀ y)A) × ¬(∀ y)¬T(x,¬A) 
(or, equivalently: T(x,(∃ y)A) × (∃ y)T(x,A). 

Once again, the completeness proof is omitted. 
A proper analysis of the notion of certainty as local truth would 

involve other related concepts: in particular, evidence and necessity. 
Their connections — in the formal framework adopted here — will be 
the topic of a separate paper. Here are some informal hints. 

 
VI. Evidence, certainty and necessity: a preliminary view  

What about this new characterization of (justified) knowledge? The 
new truth-condition (K) expresses the restriction mirrored in (B1): 
knowing that A entails, for a subject s, that A is validated by the subject's 
segment of information. Independently of other conditions (the condition 
that s believes that A, in particular), this restriction neutralizes an aspect 
of the problem of logical omniscience. As a matter of fact, suppose that 
A is a tautology formed by atomic sentences which are not validated by 
the relevant local structure. Therefore, in virtue of the new clause, the 
assertion that s knows that A is falsified, for A is not validated by that 
structure. The "absolute" knowledge of logical truths is not presupposed.  
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But the question of logical omniscience is still lurking. Take for 
example this situation, suggested by S. Zucchi (personal 
communication): 

(I) p and q are simple atomic sentences whose plain truth is 
completely evident to s. 

(II) for erroneous reasons s believes that not(not p or (not q and p)). 
[For example, s is convinced that this complex sentence is a tautology.] 

According to the new truth-condition (K), the sentence 

(*) s knows that not(not p or (not q and p)) 

is true, for the embedded sentence is: (i) true; (ii) believed by s; (iii) true 
in the subject's segment of information µ  (because p and q are true in µ ). 

There can be reasons for saying that a treatment which evaluates (*) as 
true in the circumstances described by (I)-(II) is inadequate. It depends 
on what you have in mind about the notion of (justified) knowledge. 
Unfortunately this is not a clear-cut concept in intuitive terms. Even the 
weak (traditional) definition formalized in sect. IV can be appropriate 
with respect to some pre-theoretical uses of the word.  

As to the problem of inadequacy raised by Zucchi's example, what I 
want to stress is the different nature of this alleged inadequacy with 
respect to the limitations of the traditional definition. In Gettier's example, 
this definition is responsible for the following predicament: we are 
allowed to ascribe to s the property of knowing that C (the sentence 'The 
so and so is P') although C is nothing s could verify on the basis of the 
available information. (See (i)-(v) in sect. V, where the only constituent of 
C — i.e. C itself — is not validated by  s's local structure.) But this is not 
the case of our last example, where p and q — the constituents in the 
statement believed by s — are validated by the relevant submodel. (See 
(I) and (II)). In other terms, what s believes is supported here by the 
given basis of information, whilst in Gettier's example there is no such 
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possibility of verification. The relevant data are available to the subject in 
one case, but not in the other one. 

Therefore, even if more restrictive than the traditional definition, the 
characterization of (justified) knowledge given in (K) is liberal enough to 
evaluate (*) as true in the circumstances described by (I) and (II)16. We 
have just seen in what sense this outcome can be plausible. But, in 
another sense, (K) is still restrictive. Take, once more, Descartes' analysis 
of judgements. In the Regulae he makes a distinction between evidence 
and certainty. What is evident must be grasped by a single direct act of 
the mind (intuition). It is something given and simple. But certainty can 
also be acquired by means of complicated deductive chains: 'Many 
things are known  with certainty, though not by themselves evident, but 
deduced from true and known principles by the continuous and 
uninterrupted action of a mind [...]. Hence we distinguish this mental 
intuition from deduction by the fact that into the conception of the latter 
enters a certain movement or succession, into  that of the former there 
does not.'17 This is why a complex statement, for example, can be certain 
without being evident. So, Descartes' distinction reminds us that different 
levels of justification  can be individuated: 

evidence — the status of some (privileged) elementary statements, 
whose truth is grasped by a simple mental act; 

certainty — the status of: 
(i) evident statements; or 
(ii) (complex) statements whose ultimate components are verified, but 

whose truth is grasped by some mental operation; 

                                                 
16 To prevent this outcome some requirements on the inferential structure of the subject's 
set of beliefs must be introduced. This can be done by giving proper axioms for the 
operator 'B'. 
17 Rule III (Descartes, 1985: 8). 
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necessity — the status of: 
(i) statements that are certain; or 
(ii) statements whose truth is grasped (by purely logical arguments) 

independently of the verifiability of their components. 

In our framework, evident statements (for a subject c) can be 
described as (selected18) atomic statements validated by µ , i.e. by c's 
segment of information. On the other hand, certainty can be ascribed to  
statements of any complexity, provided that they are validated by µ . 
Because of the monotonicity of the partial semantics determined by our 
submodels, the truth of a statement in a given submodel is persistent  
through growing submodels. So certainty, in the particular sense selected 
here, is the notion the present paper focuses on, and is formally 
expressed by the operator 'T' (local truth). 

Finally, how to characterize necessity is a question I intend to face in 
connection with the problem of finding weaker criteria of justification. 

The discussion of Zucchi's example showed that, roughly speaking, 
the criterion formalized here (after the introduction of the operator 'T') is 
certainty, in the special sense defined above. In particular, we have just 
seen that it is liberal enough not to filter out the example (*). But it can be 
considered restrictive from another point of view. 

Suppose I have in front of me a pack of cards. I take out a covered 
card. In this situation, it might be argued, it would be plausible to say I 
know that the card is either black or red, although I have evidence for 
neither of these alternatives. But in our system of sect. V this is not 
allowed. For, let a be the intended card, B the property of being black 
and R the property of being red. Now, the truth of 'J(c,Ba∆Ra)' entails 
the truth of 'T(c, Ba ∆ Ra)', which in its turn entails either the truth of 'Ba' 
or the truth of 'Ra' in c's segment of information. But neither holds. So 
                                                 
18 To say what kind of statements can play this role is part of the philosophical 
metatheory. For example, according to Descartes the statement ‘I exist’ in the Cogito 
argument is meant to represent a sample of evidence. 
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the statement that (in the given circumstances) c knows that the card is 
either black or red is falsified. 

Shall we conclude that the criterion of justification formalized by 'T' 
(what we called certainty) is implausible? Not necessarily. After all there 
is no clear pre-theoretical idea of justification which can be referred to. 
Beyond a certain point, our intuition is helpless. A theory is needed. 
Now, axioms (B1) - (B7) capture (in part) a situation where the relevant 
criterion is certainty, in the above sense. But, in this sense, the certainty 
of a statement — as local truth in the segment of information µ  — entails 
the validation by µ  of (some of) its components. So certainty, as defined 
here, entails the "downward"19 closure of the set of the statements that it 
characterizes. And, within this theoretical characterization, it is quite 
plausible to say that to know, for example, that A or not-A we must have 
enough information to verify A or to verify not-A. 

But is it possible, in our semantical framework, to characterize a more 
liberal criterion of justification, so that necessity (in the epistemic sense 
captured by the third notion in the above classification) — instead of 
certainty — is referred to? To answer this question20, suppose that, given 
a submodel µ=<D,Iµ> in M, a local completion of µ  is defined as a 
structure σ=<D,Iσ> where, for any Pn,  Iσ+(Pn)€Iµ

+(Pn), Iσ-(Pn)€Iµ
-(Pn) 

and Iσ+(Pn)≈Iσ-(Pn)=Dn. That is, σ is a "total" structure which extends µ . 
We are now in a position to define the necessity of a statement A (with 
respect to µ ) as the truth of A in all the local completions of µ . In this 
sense, a statement can be "necessary" (with respect to the segment of 
information µ ) although its components are not validated by µ . This 
holds, for example, of the statement 'A or not A', which is true in all the 
completions of µ  although it is not validated by µ  (because A is neither 

                                                 
19 For example, downward closure of local truth under disjunction and conjunction is given 
respectively by axioms (B3) and (B4) — in the left to right sense of the biconditional. 
20 The details of this solution will be studied in a separate paper. What I present here is 
only a rough sketch. 
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true nor false in µ ). So, if in our axiom (B1) the formula 'T(x,A)' (which 
expresses the condition that A is "certain" — i.e. validated — in the 
relevant segment of information µ ) is replaced by the formula 'N(x,A)' 
(which expresses the "necessity" of A with respect to µ ), the truth of 
'J(x,A∆B)' does not entail the validation by µ  of either of the statements 
A and B any more. And I am justified in knowing that the covered card is 
black  or red although neither alternative is verified by my segment of 
information. 

Thus, the notions of evidence, certainty and necessity (as defined 
above) individuate three possible criteria of justification, according to a 
decreasing order of narrowness. If the strongest condition (i.e. evidence) 
is assumed, all those beliefs — like in Zucchi's example — which do not 
coincide with (selected) elementary states of affairs are filtered out. This 
is not true of certainty. On the other hand, this second criterion can still 
filter out beliefs that are not founded on verified information, as in the 
example of the covered card. Finally, this restriction is removed if the 
third criterion — necessity — is referred to, although it is still strong 
enough to block Gettier's (original) counterexample. 

 
Appendix. A remark on quantifiers and monotonicity 

Let us consider the extensional part of LJ — i. e. L — and the 
semantics for L which was built in relation to the set M of the 
submodels of a given standard model M. This semantics is monotonic. 
As a matter of fact, if µ=µ ' and if a sentence A of L — i.e. a sentence 
where there is  no occurrence of intensional operators — is true (false) in 
µ , then A is still true (false) in µ '. 

A probable objection is the following. If µ ,µ '�M and µ=µ ', this 
means that µ  is, in its turn, a submodel of µ '. In other terms, µ  is 
"smaller" than µ '. Therefore, what is expected is that a universal sentence 
which is true in µ  can turn out to be false in µ '. From an intuitive point of 
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view, such a sentence as 'All the books are on the desk' can be true in 
that particular segment of reality which is my office, but false in a larger 
one (the Department where I work, for example). Natural languages, in 
this sense, are not monotonic. So — it might be argued — the 
monotonicity of your semantics is guaranteed by an unnatural device: 
according to your definitions, for a sentence like '(∀x)Px' to be true in a 
submodel µ , the open formula 'Px' must be satisfied by all the 
individuals in D, which is the domain of the "absolute" model M. This 
means that what is referred to is not the restricted class of objects which 
is relevant in µ , but the whole universe. In this way monotonicity is 
insured — since there are no unpleasant surprises when passing from µ  
to the larger structure µ ' —, but the picture you present is 
counterintuitive. As a matter of fact the truth of such a sentence as 'All 
the books are on the desk' entails that the relevant domain is the set of 
things in my office, not the whole universe of things. 

That is true. For the sake of simplicity, the treatment of the quantifiers 
I have presented here is  narrow. But this restriction can easily be 
removed. The point is that, in a generalized version of this semantics, the 
submodels in M can be conceived of as contexts which determine what 
is the relevant universe for evaluating quantified sentences. So, suppose 
that statements, rather than sentences, are evaluated — where, according 
to an idea suggested by Bar-Hillel, a statement is an ordered pair <A,σ> 
formed by a sentence A and a context σ (a submodel in M, in our 
framework). And if the truth-conditions are designed to deal with 
statements, in the case of universal quantification we can have something 
like this: 

µ ,a  ||— <(∀x)A,σ> iff  µ ,au
x ||— <A,σ> for every u�D*, where D* is 

the (partial) universe of the submodel σ. 

Intuitively speaking, the submodel µ  is used to evaluate the sentence, 
whilst σ is referred to as a proper context in order to fix the relevant 
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universe of quantification. So, our semantics can precisely account for 
the phenomena mentioned in the objection at issue. But this problem is 
the topic of a separate paper, where indexical terms, quantifiers and some 
uses of definite descriptions are treated from the point of view of partial 
submodels. For the time being, I shall content myself with concentrating 
on this question: is it really true that examples like the one produced by 
our objector call for a non-monotonic treatment of quantifiers? 

Imagine this situation. I live in the countryside. My family includes five 
nice dogs. Unfortunately, some of them are extremely lively and, when 
they run off, the cats in the neighborhood are in serious danger. All of a 
sudden I hear some dog bark in the distance. I look anxiously my wife, 
who has just inspected the garden, but she reassures me. 'All the dogs 
are sleeping' she says. 

It is not true, of course, that all the dogs, in the absolute sense, are 
sleeping. As a matter of fact, there are some barking very loudly. So what 
shall I conclude? That my wife is temporarily deaf? Or that she told me a 
deliberate lie? In the circumstances I described above, it is obvious that 
neither conclusion is appropriate. My interpretation of her statement is 
that all the dogs we have in mind — i.e. the set of dogs selected with 
respect to a particular situation — are sleeping. Under this natural 
interpretation, my wife's statement is true. But notice: that all these dogs 
are sleeping is still true if a larger segment of reality is taken into account. 

What is interesting, in our trivial example, is that when I accept my 
wife's statement as true, the situation I am referring to is large enough to 
involve dogs that are not sleeping. (Am I not hearing some dog bark?) 
But this characteristic does not lead me to consider the statement false. 
The point is that, besides this large segment of the world with respect to 
which the statement is evaluated, there is another  one — used as a 
context — that I have in mind when I must select the relevant universe of 
quantification. And this is a smaller segment. As a result, it turns out to 
be true, with respect to the more inclusive situation, that all the dogs 
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individuated by the smaller situation are sleeping. More in general: if a 
class X of objects, individuated by a given segment σ, has the property P 
in µ , then X keeps on having the property P in µ ', where µ=µ '. If the 
submodels in M  are treated not only as structures which provide a 
(partial) evaluation of the sentences, but also as contexts of use (which, 
combined with sentences, form statements), it is easy to prove that, if 
µ=µ ' and the statement <(∀x)Px,σ> is true21  in µ , then this statement is 
also true in µ '22. In other terms, in this case universal quantification does 
not preclude monotonicity. And this is intuitive, since — in our example 
— if all the dogs individuated by a given segment of reality have the 
property of sleeping, that those dogs are sleeping is still true when a 
larger segment of reality (where, possibly, other dogs come on the scene) 
is taken into account. 

As a consequence, we need not give up monotonicity. What we need 
is a treatment of the quantifiers which allows our semantics to express 
this reference to a context. And the system of submodels in M makes 
this treatment possible. In some sense, the truth-conditions presented in 
sect. IV are restricted to the borderline case: i.e. when the context is the 
absolute model M itself, so that the whole domain D is selected. As I 
said, it is possible — and interesting — to remove this restriction. But 
what is important to emphazise, here, is that this move does not 
necessarily entail the rejection of monotonicity. 

                                                 
21 µ, the submodel used to evaluate the sentence, can coincide with the context σ itself, for 
contexts are in general submodels. (See note 25). So, in our example, if σ is the smaller 
segment of reality, it is true in σ that all the dogs individuated by σ are sleeping. And that 
these  dogs (whose individuation still depends on σ) are sleeping is true also in the larger 
segment, where other dogs are not sleeping. 
22 The idea is that the submodels in M play a double role: as contexts, they contribute to 
fix the referents of the terms, the domain of the quantifiers, etc.; as model-theoretic 
structures they determine the proper "local" truth-conditions. As I have already said, this 
approach is to be developed in a separate paper. 
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So partial domains (of the submodels) and monotonicity are not 
incompatible. As a consequence, the semantics presented in sect. IV is 
susceptible to interesting developments without undermining our 
assumptions about monotonicity. As you will remember, in that 
semantics the incompleteness or partiality of the submodels does not 
have to do with ontology23 (for we have an invariant domain), but, so to 
speak, with information or knowledge. In a submodel an individual can 
be totally indeterminate with respect to properties and relations (if there is 
no information about it), and this epistemological sense of "inexistence" 
is perhaps more interesting than others. But now this view can also be 
expressed in "ontological" terms, without losing monotonicity. Take a 
semantics which allows the local domains to be (proper) subsets of the 
domain D in the "complete" model M, e.g. by defining "local" existence 
(with respect to a subject s) as follows: 

 
(DET) E(s,t) iff (∃P)(T(s,P(t)) ∆ T(s, ¬P(t))) . 
 
This means that t "exists" in the segment of information µ  assigned to 

s iff there is some property P such that either P or its negation can be 
definitely ascribed to t in µ . Incidentally, (DET) fits the conceptual 
framework illustrated in sect. I, since it is very close to the so-called 
Thomas' principle assumed by Descartes24. 

The semantical counterpart of this definition is the following: 

(DEG) µ  ||— E!(x) if and only if for some predicate P, either µ  ||—
P(x) or µ  ||— ¬P(x) . 

                                                 
23 There are no non-denoting terms (as for example in free logic) with respect to the local 
domains. 
24 'According to the laws of true Logic, the question "does a thing exist?" must never be 
asked unless we already understand what the thing is.' See Reply to Objections I 
(Descartes, 1985: 13). 
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That is, the "local" existence of x in a submodel is expressed in terms 
of x's being either in the extension or in the counterextension of some  
predicate in µ . And the expansion of information through growing 
submodels is mirrored by a parallel expansion of the partial domains. 
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