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1. Introduction 

In recent years, scientists have been increasingly called upon to 
develop interdisciplinary research programs. For some, interdisciplinarity 
is essential if we are to make progress in the future. For others, it's a 
waste of time. Who is right? In this article, I would like to take the case 
of research in Psychology and Neuroscience, and ask to what extent 
interdisciplinary research is (a) feasible, and (b) desirable. I will conclude 
that, although for large parts of Psychology and Neuroscience 
interdisciplinary collaborations have little to offer,  for many scientists 
working on particular topics, collaboration with other disciplines can be 
highly profitable.  

There will no doubt be some readers who are already convinced that 
Neuroscience and Psychology can indeed cohabit - for them I will be 
preaching to the converted. The last decade has seen the development of 
a research domain entitled “Cognitive Neuroscience” whose very 
existence shows that the dividing lines between Psychology and 
Neuroscience are becoming increasingly blurred (Churchland and 
Sejnowski, 1988, LeDoux and Hirst, 1986, Requin, 1987, Scheibel and 
Wechsler, 1990, Thompson, 1990). In 1989 Michael Gazzaniga founded 
an interdisciplinary journal (“Journal of Cognitive Neuroscience”), and in 
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France, a number of laboratories have set up interdisciplinary research 
programs.  

There are nevertheless a large number of researchers who see 
Psychology and Neurosciences as too different in approach to allow 
successful integration. It is to this audience that this paper is addressed. 

 
Advantages of an interdisciplinary approach  

One of the clearest advantages of using an interdisciplinary approach 
is that it often allows a problem to be seen from a completely different 
perspective. A good analogy is stereoscopic vision. If you look an a 
scene with one eye at a time, it always has a tendency to look flat. 
However, if you can use both eyes at the same time, stereoscopic 
mechanisms allow you to make out the true three-dimensional shape of 
the object. Indeed, an object so well camouflaged as to be invisible when 
seen with one eye, may become obvious when seen with two eyes. And 
so it is in science. If you can get a variety of views of the same problem, 
you are in a much better position to assess its overall form and to 
develop the best strategies for tackling it. Note that this does not mean 
that any particular view is better - that would be like trying to decide 
whether the left or right eye's views were better. What counts is the 
advantage gained by combining both views. 

One way in which an interdisciplinary approach may help is by 
providing information that can constrain models. For example, it is 
perfectly possible for a psychologist to produce a model of some 
particular psychological processes using purely behavioural data. Often, 
several competing models may be available, and so the question arises of 
how the different models can be distinguished. It is at moments such as 
these when information coming from a different perspective can be 
particularly useful. We will see an example of this later when we discuss 
the speed of processing in the human visual system. 
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There is of course a danger when one confronts two disciplines as 
different as Psychology and Neuroscience that stems from the tendency 
towards reductionism. Some may well feel that if psychological 
phenomena can be "reduced" to neurophysiology, then the psychological 
phenomena themselves are no longer of interest and need not be studied 
further. I believe strongly that this is quite erroneous. Certainly, science 
should strive towards reductionist models when possible, but in the 
course of such an enterprise, it should never be forgotten that the aim is 
to understand the higher level processes. Blind analysis of lower level 
mechanisms without consideration of their overall function is unlikely to 
go far. 

One way of reconciling the different points of view is to see 
interdisciplinary research in Psychology and Neuroscience not within the 
framework of reduction, but rather with a framework of synthesis. 
Valentino Braitenberg wrote a delightful book called "Vehicles: 
experiments in synthetic psychology"(Braitenberg, 1984), in which he 
imagined a series of simple artificial life-forms, equipped with simple 
sensory and motor capacities, and rudimentary nervous systems. He was 
able to show that even these simple "organisms" could demonstrate 
some remarkably sophisticated behaviours. Note that here the approach 
has been turned on its head - no longer are we trying to eliminate higher 
level properties by reducing them to phenomena at a lower level. Rather, 
the aim is to reproduce complex phenomena by putting together relatively 
simple elements. I believe that this "synthetic" approach re-establishes the 
correct balance between the different levels.   

 
Interdisciplinary research: for whom?  

In the preceding paragraphs, I have argued that interdisciplinary 
research offers (i) a richer perspective view, (ii) greater potential for 
constraining models and (iii) the promise of a "synthetic" rather than a 
purely eliminative reductionism. Does this mean that I believe all 
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psychologists should suddenly establish active collaborations with the 
nearest neuroscientist and vice versa? The answer is very definitely no, 
and I will attempt to say why. 

Both Psychology and Neuroscience are vast domains. Psychology in 
particular covers an immense area, stretching from industrial, 
occupational and social psychology to psychophysical studies of 
perceptual processes. Likewise, a brief look at the abstracts of any major 
Neuroscience meeting reveals the immense range of topics covered. You 
will find detailed studies of the anatomy and physiological of different 
brain structures, but also a vast amount of research on the molecular 
biology of neurotransmitters and their receptors. What percentage of 
work in these two great domains would actually benefit substantially from 
increased interdisciplinarity? I think the answer is perhaps quite low - 
perhaps as little as 10-20%, but although the percentage may be small, 
the need for interdisciplinarity is urgent. 

What characterizes the 10-20% of Psychology and Neuroscience for 
which interdisciplinarity holds the greatest promise? I firmly believe that 
the critical point is whether or not there is a common object. To take an 
example which is close to my own heart, namely vision, it is clear that 
there are questions which are just as pertinent to someone working in 
Psychology as to someone working in Neuroscience. Questions such as 
"how long does it take to process an image?", "how many levels of 
processing are involved?", and "how does experience influence visual 
processing?" are all questions that are meaningful to people with 
backgrounds in Psychology or Neuroscience. It may well be that there 
are currently no satisfactory answers to such questions, but the mere fact 
that the questions have meaning to both communities encourages me in 
the belief that an interdisciplinary approach can be applied. 

Vision is not the only area where the case for interdisciplinarity is 
clear. All areas of sensory processing merit such an approach, including 
auditory processing of sounds and speech, as well as tactile, gustatory 
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and olfactory processing. One aspect of sensory processing that merits 
particular interest is the study of attention (Posner, et al., 1987, Wurtz, et 
al., 1982). Another key area of overlap concerns the study of memory 
mechanisms - there has long been the possibility that short and long-term 
memory mechanisms may be distinguished both psychologically and 
neurophysiologically. This is one reason why the "psychobiology" of 
memory is such a relatively advanced example of interdisciplinary 
research. Finally, the study of movement control is yet another area 
where an interdisciplinary approach is not only to be encouraged, but 
where it is almost a necessity. 

Clearly, the study of perception, attention, memory and motor control 
does not exhaust the subject matter of either Psychology or 
Neuroscience, and so it is definitely not the case that everyone working in 
these areas should be pushed towards collaboration.  

 
Interdisciplinarity: The obstacles   

Nevertheless, even within those areas which are clearly suitable for 
interdisciplinary work, collaboration has been the exception rather than 
the rule, although this has clearly been changing  in recent years. What are 
the reasons for this? 

The first reason is related to the point I made in the last paragraph. 
The majority of researchers working in Psychology and Neuroscience 
really do have little overlap. As a result, if a psychologist was to try 
discussing with the first neuroscientist to hand, the chances are that 
nothing very interesting will happen. And of course, the same is true for 
the neuroscientist tempted by the possibility of interacting with someone 
trained in psychology. This, coupled with a natural tendency to lump 
every one in another discipline together ("I've tried talking to people in 
neuroscience - it just doesn't work"), is enough to explain why the initial 
results can be most discouraging. However, if the researchers in 
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psychology and neuroscience have  common interests (such as visual 
processing, for example), such early encounters can be very rewarding. 

A second reason stems from the insecurity that many researchers feel 
as soon as they are no longer on their home territory. For many, having 
to admit that they are just plain ignorant about a subject is too great a 
shock for the ego. I think that one should fight against such feelings - 
there is nothing wrong with admitting that there is a lot to learn. 
Furthermore, I know from experience that it is often the naive question 
from someone outside your own field which reveals the fundamental 
unresolved issue that you yourself have tended to push to one side, even 
subconsciously. 

A third factor which often limits communication results from the fact 
that researchers in adjacent disciplines are often concerned with different 
types of measurements. Thus,  in experimental psychology, results are 
typically expressed in terms of (a) reaction times, (b) performance (i.e., 
percentage correct), or (c) verbal responses. In neurophysiological 
studies, one typically determines the selectivity of neuronal responses. 
Surprisingly, the measurement of neuronal response times has, at least in 
the visual system, been remarkably rare (Robinson and Rugg, 1988), and 
this has severely limited one area where interdisciplinary collaboration 
should have been relatively straightforward. We will see later on how 
some progress has been made on this question. 

Finally, I believe that perhaps the most significant obstacle to 
interdisciplinary research has been the lack of a common language. 
Psychologists and Neuroscientists have, at least in the past, simply not 
been on the same wavelength. Models in psychology and models in 
neuroscience have generally been completely different and so using data 
from one domain to validate models in another has been virtually 
impossible. 

However, I would like to argue that all this is changing. The advent of 
connectionist models in psychology, essentially during the last ten years, 
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means that we now have the possibility of generating a class of 
explanatory models which actually mean something to workers in both 
psychology and neuroscience (Bechtel and Abrahamsen, 1991, Memmi, 
1990). 

 
2. Connectionist models 

In there simplest form, connectionist models can be defined as 
systems composed of a large number of interconnected processing units  
(Arbib, 1987). Each unit can be relatively simple, but processing power is 
obtained by allowing the network of units to operate in parallel. The state 
of the system is effectively defined by the state of activation of the units, 
and information is stored by varying the strengths of the connections 
between units. Although the history of connectionist modelling in 
psychology goes back a long way (Anderson and Rosenfeld, 1988), it 
has essentially been during the last ten years that they have started to 
really change the face of psychological theory.  A major turning point 
was the publication of McClelland and Rumelharts' Interactive Activation 
model of word recognition in 1981 (McClelland and Rumelhart, 1981), 
but even more influential were the pair of volumes entitled "Parallel 
Distributed Processing: Explorations of the microstructure of cognition" 
published in 1986 (McClelland and Rumelhart, 1986, Rumelhart and 
McClelland, 1986). Since that time, connectionist models have been 
applied to many areas of psychology, including such diverse areas as the 
recognition of multiple objects (Mozer, 1991), face recognition (Burton, 
et al., 1990); attention (Phaf, et al., 1990, Sandon, 1990), language 
development (Plunkett and Marchman, 1991, Seidenberg and 
McClelland, 1989), the effects of brain damage (Hinton and Shallice, 
1991), music perception (Bharucha, 1988), and conditioning (Kehoe, 
1989) to name but a few. 

There is not space here to describe in detail the pros and cons of 
connectionist models. The essential point to retain is that since the 
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models themselves are at least to some extent "neurally-inspired", they at 
least have the potential of being interpretable in both the psychological 
and the neuroscience domains. 

Despite this potential, many researchers often play down the biological 
realism of the models. Many connectionists will affirm that they make no 
claim whatsoever that the nodes in their models bear any resemblance to 
real neurones - they will often say that whether or not such an equivalence 
is possible is quite irrelevant to the explanatory potential of a 
connectionist model. While such a position is perfectly understandable 
and in many ways quite justified, it does limit the potential for 
interdisciplinary collaboration.  

One reason why many connectionists see no direct relevance of 
neurophysiological findings for their models lies in the nature of the 
problems that they are addressing. Often, they are interested in high level 
cognitive functions such as language, and although such questions have 
been investigated with techniques in neuroscience such as evoked 
potentials (Kutas, et al., 1988, Paller, et al., 1987, Rugg, 1990) and 
positron emission tomography (Petersen, et al., 1988, Posner, et al., 
1988), such studies have tended to provide information about anatomical 
and functional specializations in language processing but not about the 
response properties of individual neurones in the network. In fact, there 
have been some fascinating recent studies of neuronal activity in the 
human temporal lobe which have begun to shed some neurophysiological 
light on such problems (Creutzfeldt and Ojemann, 1989, Creutzfeldt, et 
al., 1989a, Creutzfeldt, et al., 1989b, Heit, et al., 1988)), but in general, 
detailed neurophysiological data is generally only available for more 
“peripheral”  sensory and motor processing. 

To increase the potential cross-fertilization between psychology and 
neuroscience that connectionist modelling can offer, it is necessary to 
choose an target area for which both psychological and 
neurophysiological data are available. The last few years have seen a 
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small number of such attempts ((Lehky and Sejnowski, 1988, Lehky and 
Sejnowski, 1989, Lehky and Sejnowski, 1990, Zipser and Andersen, 
1988), and I am confident that such attempts at integration will become 
increasingly common in the years to come.  

In a previous section I mentioned the fact that in experimental 
psychology, experimental data usually refers to either the subjects 
performance (for instance as a percentage of correct responses) or to the 
subjects speed (measured as a reaction time). In some situations the 
experimenter may be interested in subjective reports, but in the majority 
of cases, it is either performance accuracy or reaction time which is of 
interest. In the next sections I will try to illustrate how connectionist 
models can link psychological with neurophysiological data domains for 
these two types of paradigm.  In the first, I will outline one example 
based on work from my own group which illustrates how connectionist 
models can be used to bridge the conceptual gap between 
neurophysiological and psychological data in the area of orientation 
identification. 

 
3. Connectionism and performance measures: The example of 
orientation identification. 

It has been known since the early 1960s that the visual cortex contains 
neurons which selectively respond to contours with particular 
orientations (DeValois and DeValois, 1988, Henry, et al., 1974, Howard, 
1982, Hubel and Wiesel, 1962, Orban, 1984). However, the way in which 
the activity of such neurons is used to code the orientation of a stimulus 
remains controversial. One popular view, based on Selfridge's 
"Pandemonium" model (Selfridge, 1959) is to think of these orientation-
selective neurons as "feature-detectors" and to suppose that perceived 
orientation is determined by  the ones which are most active. A clear 
example of this "peak-activity" coding position is given in a recent review 
article on computational maps in the brain in which Eric Knudsen and his 
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co-workers proposed the following formulation: "Whether the desired 
information is the orientation or direction of motion of a visual stimulus 
...., the answer is always represented as the location of a peak of activity 
within a population of neurons" ((Knudsen, et al., 1987), page 59). 
However, recent psychophysical and neurophysiological data cast doubt 
on such a formulation,  at least in the case of orientation perception. It 
would appear that it is perhaps not the most active neurons which 
determine perceived orientation, but rather the relative levels of firing in 
neurons tuned to orientations offset to either side of the orientation to be 
judged.  

In order to gain further insight into the relationship between the activity 
of orientation selective neurones and perceived orientation, Alexandre 
Pouget and I decided to use a connectionist model of orientation 
identification (Pouget and Thorpe, 1991, Thorpe and Pouget, 1989). The 
network itself was fairly straightforward (see figure 1). There were just 
two layers of units, an input layer and an output layer. The input layer 
was made up of a large number of units with properties similar to 
neurones in the visual cortex. They were orientation selective, in that they 
responded to stimuli having a certain range of orientations. They had a 
bell-shaped Gaussian tuning curve, with a bandwidth at half-height similar 
to real neurons (roughly 25°). Each unit preferred a particular orientation, 
so that the complete set of units covered the entire range of orientations. 
Importantly, the units in the input layer were noisy in that they did not 
always respond in the same way to a particular stimulus - instead they 
showed a mean level of firing to which was added a certain amount of 
gaussian noise. The output units were trained to classify the orientation of 
a presented stimulus, in much the same way as human subjects were 
trained in a parallel psychophysical study. During training, feedback was 
provided to allow the subject (or the network) to identify which of two 
possible orientations had been presented on any particular trial. When 
performance had reached asymptotic levels, feedback was eliminated and 
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performance determined over a large number of trials (400 in the case of 
the human subjects). In separate experimental sessions,  performance 
was assessed with stimuli varying in separation from as little as 0.35° to 
over 10°, and in this way, a psychometric function for orientation 
identification could be established. 

 
Left Right
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Figure 1. The connectionist model used by Pouget and Thorpe (1991) to model 
orientation identification. The input layer is composed of a series of orientation 
tuned units, each with a Gaussian filter shape. The output layer contains units 
that were trained to respond to different test stimuli. 
The first result was to find that the network had performance curves 

that could accurately fit the human psychophysical data (see figure 2). In 
a task with two stimuli to identify, performance starts at close to 50% 
with the smallest separations, but increases rapidly to around 75% for a 
separation of 1.4° before reaching virtually perfect levels of performance 
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at around 10°. It was therefore clear that we had a reasonably good 
model of the human psychophysical performance curves. But the second 
major finding was considerably more interesting. When we looked at the 
way in which the synaptic weights had been set up as a result of training 
we found that they highest weights were not associated with units tuned 
to the orientations used during training (see figure 3). Rather, it was units 
preferring orientations well to either side that were the most important. In 
effect this means that if you wish to decide whether a line is 1° to the left 
or to the right of vertical, your best strategy would not be to compare the 
activity of units tuned to +1° and -1°. A much better strategy is to 
compare the relative activity of units tuned to orientations 10-15° to either 
side of the vertical. In retrospect it is not too difficult to see why this is 
the case. Because of the bell-shaped tuning functions of units in the input 
layer, and their relatively large band-widths, there is hardly any change in 
the activity of a unit tuned to -1° when the stimulus changes in orientation 
from -1 to +1°.  In contrast, the same small change in orientation 
produces a much more substantial  change in output for units tuned to 
10-15° to either side of the vertical.  
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Figure 2: Comparison of the performance of the connectionist net with the 
performance of two human observers (SJT and VB) on an orientation 
identification task with two possibilities. In both cases performance increased 
from 50% correct (chance) with the smallest separation between the test stimuli, 
to 100% when the separation was more than about 6° (See Pouget and Thorpe, 
1991). 
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Figure 3: Connection strengths between the input layer units and the two output 
units A and B after training with two test orientations separated by 2°. Note that 
the highest weight strengths are not found for the most strongly activated units 
(i.e. those centered on the test stimuli), but rather the ones whose peaks are offset 
to the right and left by 15-20° (Pouget and Thorpe, 1991). 

In presenting this example of a connectionist model for orientation 
identification, I hope to have shown how connectionist models can 
provide a way of linking neurophysiological and psychological levels of 
analysis. It is important to stress that until recently, few people could 
claim to understand how it was that humans could make orientation 
discriminations of less that 1°, despite the poor tuning of the neurones in 
the visual system. Connectionist models have provided a plausible way 
of bridging these two levels, but more importantly, they have provided 
insights into the mechanisms of coding, casting doubt on the widely 
accepted notion of "feature-detectors", and arguing for a more 
distributed coding scheme, at least in the case of orientation. 
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4. Connectionism and reaction time date 

As I mentioned earlier, a great deal of work in experimental 
psychology deals not with performance measures such as the percentage 
of correct responses, but rather with reaction time measures. It may been 
shown, for example, that the time taken to decide whether a string of 
letters is a word or not depends on a variety of factors, such as the 
words frequency, what words had been presented just before, and 
whether the word in question had been seen earlier or not. How can 
connectionist models provide insights into such effects? 

One of the most popular connectionist models ever developed is the 
interactive activation model, first presented by McClelland and Rumelhart 
in 1981 (McClelland and Rumelhart, 1981, Rumelhart and McClelland, 
1982). The basic idea is to have a system of interconnected units in 
which units send outputs to other units which in turn send signals back. 
The fact that information is continuously flowing back and forth between 
units means that the whole system will have quite complex dynamics. 
Typically, in response to a particular input, the system with gradually 
settle into a stable configuration over a number of cycles. This type of 
constraint-satisfaction process is actually typical of many connectionist 
and neural network systems, including the associative memory nets 
described by Hopfield (Hopfield, 1982, Hopfield, 1984), Grossberg's 
Adaptive Resonance Theory or ART (Carpenter and Grossberg, 1990, 
Grossberg, 1987), along with many others. 

In recent years, such interactive models have been used to model 
reaction time data in a number of areas. Typically, an interactive 
activation type of model is used, and the number of iterations required 
for the network to reach a certain configuration determined as a function 
of the initial conditions. Thus, it might take 50 cycles to reach criterion in 
one situation, and 54 cycles in another. If one assumes a certain value for 
the time of each iteration (for example 10 msec), one can account for 
differences in reaction time. 
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The use of interactive activation models is certainly a very important 
advance in our ability to understand reaction time data. However, there 
are problems. These problems stem from the fact that  the human visual 
system appears to  behave more like a feed-forward network than one in 
which the entire system gradually settles towards a final stable state. At 
this point it is worth noting that all neural networks can be roughly 
divided into two basic types. In the first type, units are interconnected, 
and so each unit is able to influence its targets and vice versa. Such 
networks form the basis of the interactive activation models we have just 
been talking about. In the second type of network, the flow of 
information is essential unidirectional, and the architecture can be 
described as a feed-forward net. This is characteristic of a variety of 
networks including perceptrons, multi-layer perceptrons and networks 
trained by standard learning procedures such as back-propagation. The 
two-layer network that we saw in the previous section on orientation 
identification is of this type, because there are no connections from the 
output layer to the input units. 

Feed-forward nets have a number of characteristics that set them apart 
from more highly interconnected nets of the type used in interactive 
activation models. They test to be quick, because the output of the 
system is decided on the basis of a single forward pass. However, at 
least in conventional connectionist models, the response time of a feed-
forward net will be fixed, and as a result, they fail to provide a means of 
integrating reaction time data. 

Is visual processing feed-forward?  

The main reason for believing that human visual processing relies 
mainly on feed-forward mechanisms comes from the speed with which 
processing can be completed. Although we often fail to appreciate the 
fact, it is truly remarkable just how quickly we can recognize images 
flashed before us. In experiments performed in my own group in 
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collaboration with Eva Bonda, we have investigated the ability of normal 
human subjects to identify briefly presented natural images (famous 
faces, household objects, well-known locations, logos, etc.)(Thorpe, 
1988). Even when presented for only 20 msec, subjects are able to name 
such stimuli without difficulty. This is true despite the fact that the 
subjects have no idea about the image to be presented - each subject sees 
each stimulus only once. Furthermore, identification is still remarkably 
good when the image is flashed in peripheral vision, i.e. the subject is not 
looking directly at it. 

Such experiments illustrate the remarkable processing power of the 
human visual system, but unfortunately tell us little about the amount of 
time taken up by the visual processing itself. Such questions can be 
tackled more directly by looking at neurophysiological data on the 
responses of single neurones in the visual system of the monkey, as well 
as evoked potential recordings in the normal human subject. Perhaps the 
most striking data concerning the speed of visual processing comes from 
studies on neuronal responses selective for faces. Over the last decade, a 
large number of neurophysiological studies have confirmed the existence 
of neurones in parts of the monkey temporal lobe which have responses 
that are selective for faces. Such neurones can respond briskly whenever 
a face is shown to the animal, yet show little or no response to any other 
class of stimuli (Hasselmo, et al., 1989, Perrett, et al., 1987, Perrett, et al., 
1982, Rolls, 1984, Yamane, et al., 1988) . These neurones have a number 
of fascinating properties, but in the present context, the important thing 
to note is that they typically start to fire between 100 and 140 ms after the 
onset of the visual stimulus. In some cases they have even been known to 
fire after only 80 ms. Other studies using evoked potentials in humans 
confirm the rapidity of this face selective response; both Jeffreys and 
Grusser have reported face-selective evoked potentials that start 120-160 
ms after stimulus onset (Bötzel and Grusser, 1989, Jeffreys, 1989). 
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Such neurophysiological data shows that within about one tenth of a 
second of the onset of a visual stimulus, the visual system has already 
"decided" whether the image contains a face or not. Anatomical studies 
show that the part of the temporal lobe where such face-selective 
neurones are found is probably at least 10 steps away from the 
photoreceptors of the retina (see figure 4). In order to activate the face-
selective neurones, visual information has to go through all ten layers in 
only 100 or so milliseconds, allowing only 10 milliseconds per layer. It is 
known that neurones send information in the form of a series of 
impulsions or action potentials. However, since the firing rate of cortical 
neurons rarely exceeds one hundred or so spikes per second, this means 
that in the 10 milliseconds allowed per layer, each neuron is very unlikely 
to generate more than one action potential. Thus, even if the flow of 
information through the visual system is entirely feedforward, each 
neurone can only generate one spike. Any use of feedback loops will add 
around 10 milliseconds to the processing time, and thus it simply difficult 
to see how extensive use of feed-back loops can be compatible with the 
rapidity of visual processing. 
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Figure 4: The anatomy of visual cortical areas is complex. In order to reach the 
face-selective neurones in the anterior inferotemporal lobe (AIT), information has 
to pass through areas V1, V2, V4 and the posterior inferotemporal areas (PIT) as 
well as the retina and thalamus (not shown). 

Further evidence that feed-forward mechanisms predominate during 
visual processing comes from neurophysiological studies of the response 
dynamics of neurones in the visual cortex. We have recorded neurones in 
the primary visual cortex of the awake monkey to the presentation of 
visual stimuli varying in either orientation or stereoscopic depth 
(Celebrini, et al., 1990, Thorpe, et al., 1991, Thorpe, et al., 1989). In both 
cases, neurones were found to be fully selective at the moment they 
started to respond, which argues against the possibility that their 
responses depended on feedback from later stages. 

There are thus a number of reasons for thinking that visual processing 
depends to a large extent on feed-forward mechanisms. But how can we 
reconcile this with the changes in reaction time that characterize much 
work in experimental psychology? In the next section I would like to 
suggest a way in which information could be encoded in neural networks. 
This coding scheme has the merit of allowing reaction time data to be 
accounted for in the context of a feed-forward system, that is, without 
resorting to the use of an interactive activation type architecture. 

 
5. The coding problem 

As I pointed out earlier, neurones are known to send information in the 
form of a series of action potentials. The pioneering experiments of 
Adrian in the 1920s were the first to show that the firing rate of sensory 
neurones is a function of stimulus intensity. Since that time, it has 
generally been thought that neurons send information about their state of 
activation in the form of a frequency code : the stronger they are 
activated, the higher is their firing frequency (see figure 5).  However, the 
feasibility of using firing rate or indeed any scheme involving large 
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numbers of spikes per neuron as a way of coding analog information is 
brought into question by the remarkably high speed of visual processing 
mentioned in the previous section. Given that the processing time per 
layer is on average only  10 msec, any neuron firing at less than 100 
spikes per second (a situation  fairly typical for cortical neurons), will 
only generate one spike before the next layer has to start responding, and 
this clearly limits the informational value of a frequency code. There are 
other ways of transmitting information which use the pattern of firing 
across a number of neurons (varying the proportion of active neurons or 
their degree of synchronization (Abeles, 1982, Gray, et al., 1989)), but 
there is another possibility, largely neglected in the past, based on the fact 
that when stimulated, the time taken for a neuron to reach threshold for 
generating a spike depends on the strength of the stimulus. Put simply, 
the stronger the stimulus, the faster the neuron depolarizes, and the 
sooner it generates a spike. Consider the effect of flashing an image on 
an array of receptors such as the one illustrated in figure 6 : a wave-front 
of spikes would be generated in the output fibres, with the leading spikes 
corresponding to the points where the intensity was highest, and thus a 
great deal of information would  be contained in the relative arrival times 
of spikes in different fibres of the optic nerve. Although the example 
illustrates how a spatial  intensity profile could be coded in a wavefront 
using only one spike per fibre, it should be realized that the same coding 
could also be used for other stimulus dimensions. Consider what would 
happen if the six neurons in figure 6 were sensitive not to the intensity in 
different spatial locations, but rather to contours at different orientations - 
in such a case, the wavefront would contain information about stimulus 
orientation. 
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Stimulus

Firing rate Spikes/time interval

Interspike interval (ms)

Onset latency (ms)

Figure 5: Possible neuronal codes based on the firing pattern of a single neuron. 
In response to the onset of a stimulus, the neuron can show changes in firing rate 
(number of spikes in a given time interval) which can also be viewed as a change 
in the interspike interval. In addition, the onset latency of the unit may contain 
information (the stronger the stimulus, the shorter the onset latency). 
 

A B C D E F

INTENSITY  

Figure 6: Six units can be used to code an intensity profile on the basis of only 
one spike per neuron, since the onset latency is a function of stimulus intensity. 

Of course, the information contained in the relative timing of spikes in 
different neurons is only of use if subsequent processing can make use 
of these differences. There is good evidence that timing differences are 
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indeed used during sensory processing in a variety of domains, including 
auditory localization (Knudsen, et al., 1987) and the detection of visual 
movement (Poggio and Koch, 1987). Furthermore, research on the 
neurobiology of echolocation in bats (Suga, 1990) and the processing of 
sensory information in electric fish (Kawasaki, et al., 1988) has shown 
that neurons can be sensitive to delays in the sub-millisecond range. 
However, in all these cases the timing differences result from the 
temporal characteristics of the physical stimuli themselves, but in 
principle, the nervous system could also make use of the temporal delays 
introduced by the analog to temporal transformation that is a 
characteristic feature of all neurons. The question therefore arises of 
whether  significant changes in onset latency can also result from changes 
in stimulus parameters which are neither temporal in nature nor simply 
related to changes in intensity (there is already considerable evidence that 
response latencies typically decrease with increases in intensity). For this 
reason we have looked at the responses of neurons in area V1 of the 
visual cortex in the awake macaque monkey to stimuli differing in either 
(i) orientation, or (ii) stereoscopic disparity. In both cases we found 
evidence that changing either parameter could introduce delays of 10, 20 
or even 40 milliseconds. 

Could such stimulus-related changes in onset latency be of functional 
significance? We believe that the answer is yes. It has already been noted 
that the minimum response latencies for visual cortical neurones vary 
over a wide range, from less than 40ms to over 100 (Maunsell, 1987, 
Vogels and Orban, 1991). In principle these latency differences could 
result from differences in the cellular type of the neurones or their 
anatomical positions. But the present results show that the nature of the 
stimulus used is another factor crucial in determining response latency. 
Consider three structurally similar orientation selective neurones located 
in  the same cortical layer of visual area V1. Because of their similarity, 
their minimum response latencies may well be identical. Nevertheless, if 
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they are tuned to different orientations, their  onset latencies in response 
to a stimulus with a given orientation may well differ quite substantially 
(our results suggest that latency shifts of 10 or more msec may be quite 
common). As a result, the sequence of activation in the three neurones 
will contain considerable information about stimulus orientation, even if 
only one spike per neurone is available.   

The suggestion that the  relative timing of the first spikes in response 
to a stimulus across an array of neurons may contain much usable 
information should not be taken to imply that subsequent spikes are not 
used or that the firing frequency is not an important characteristic of 
neuronal responses. It is clear that in most situations the two measures 
will  be strongly linked. Nevertheless, the onset latency hypothesis does 
have the advantage of enabling a considerable amount of processing to 
be achieved using just the first spike. Furthermore, one very important 
aspect of using onset latency coding during feed-forward processing in a 
multi-layer system is that the first information to be sent for processing 
by later stages will come from the most active neurons. In effect, 
information will be forwarded for subsequent processing in order of 
priority, thus reducing the computational load on later stages and 
reducing the effects of noise.  

  
6. Temporal coding and reaction times 

How can the temporal coding model described in the previous section 
be related to psychological models? As I mentioned earlier, a large 
proportion of the database in experimental psychology consists of 
studies investigating the effects of various factors on response times 
(Luce, 1986). Although many mathematical models of response times 
have been generated over the years, it has only been relatively recently, 
with the development of connectionist models, that a 
neurophysiologically plausible framework has been available in which 
such effects can be modeled. However, most connectionist models that 
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have attempted to integrate findings about response times have relied on 
some sort of constraint-satisfaction type process, of the type typical of 
interactive-activation models. But, as I have argued (Thorpe, 1989, 
Thorpe and Imbert, 1989), visual processing at least seems to rely on 
largely feedforward mechanisms, and such networks are generally 
considered to have a processing time that is fixed. 

The situation would seem to be radically different if we take into 
account the way that neurones convert analog information into delays, as 
is the case in the temporal coding scheme that I have presented. If we 
consider that the visual system contains a large number of processing 
levels (probably at least ten), and that the time taken for visual 
information to traverse each layer is not fixed but depends on how 
effective the incoming signals are in activating the neurones, we have the 
basic form of a model which can account for a considerable range of 
psychological data.  
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Figure 8: A highly schematic visual system with five layers of units and feed-
forward connections. Because of the way in which neurons generate spikes (the 
delay introduced is inversely proportional to the strength of activation), the time 
taken to reach the highest layers will depend on many factors, including the 
nature of the input pattern, the contrast of the stimulus, expectancy, previous 
experience and so on. 

Let us imagine a neural network corresponding roughly to the 
organization of the visual system (see figure 8). The lowest layer 
corresponds to the retina - the activity of the units in this layer directly 
reflect the pattern of intensities found in the original image. Progressively, 
as we move up through the hierarchy, the receptive field properties 
become progressively more complex, starting with circular "Mexican-
hat" shaped receptive fields, then orientation and spatial frequency tuned 
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units, and so on. If the system was being used for understanding written 
language, we might find units in even higher levels selective for letters, 
letter combinations and even words. How might such a system behave if 
we make the assumption that the units send information as impulsions, 
and that the time at which these impulsions reflects how strongly the unit 
is activated - the stronger the activation, the shorter the delay? If the input 
pattern corresponds to something that the network is set up to process 
well, activity will flow rapidly through the net, and the output units will 
become activated after a short delay. If on the other hand, the input 
pattern is noisy or random, activity will propagate through the net slowly 
if not at all. Many factors will influence the flow of information through 
the net. Depending on the way the network has been set up, these could 
include the familiarity of the input pattern, attention-like phenomena, 
priming effects and so on. In each case, the time taken to activate the 
output layers will vary, and such variations correspond naturally to 
variations in reaction time values found in psychological experiments. 

Clearly, this is not the place to go into the details of how such a model 
could be applied. Nevertheless, I hope that it clear that the addition of 
extra neurophysiological facts to a connectionist model has considerably 
enhanced the ability of such models to cope with psychological data. 
Jacques Gautrais, one of my students, is currently developing a 
connectionist simulator which incorporates spiking neurons with delays 
which we hope will provide a way of modeling psychological data in the 
not too distant future. 

 
7. Conclusions 

This paper has tried to make a number of points.  
• Interactions between researchers in psychology and neuroscience have 
been limited by a number of factors. One of the most important has been 
the absence of a common theoretical framework which can incorporate 
ideas from both disciplines. 
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• I think that connectionist models may well provide this common 
language. However, real interdisciplinarity will still only be possible 
between workers interested in the same basic objects (e.g. vision, 
audition, attention, memory, motor control…) 
• One way of increasing overlap is to develop connectionist models 
which take into account realistic neurophysiological data. An example 
was given of this approach using orientation identification.  
• It is important to stress that in such cases, we are not attempting to 
"reduce" psychology to neuroscience, but rather to "synthesize" 
psychological data from neurophysiological building blocks. 
• One major to using connectionist models to model response time data 
is that generally, this has relied on using interactive activation type 
models. For a variety of reasons, visual processing is likely to make 
particular use of feed-forward mechanisms, which, at least in most 
connectionist models, do not show response time variations.  
• A possible way of avoiding this problem is to introduce a more 
biologically realistic type of connectionist model in which the units 
generate impulses, and where analog signals get converted into delays. In 
a multi-layer feed-forward net using such a coding scheme, the response 
time (i.e. the time taken for information to pass through all the layers 
would vary according to conditions. This could well provide a way of 
modelling a wide range of psychological processes. 

 
Simon J. THORPE 

Institut des Neurosciences 
Université Pierre et Marie Curie, Paris 
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