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I. Introduction 
 
One of the most peculiar features of the methodological style of 

Artificial Life (AL) (Langton, 1989; Langton, Taylor, Farmer & 
Rasmussen, 1992; Varela & Bourgine, 1992; Fernandez & Moreno, 
1992) is the attempt to ground all the processes that concern living 
systems with the purpose of --sooner or later-- being able to 
artificially emulate them. After the functionalism which was the main 
characteristic of AI, now a way is open for a new structuralism that 
will make possible to study the behavior of focused systems 
through relations that are closer to what is materially realizable. The 
AL approach is developed towards the ideal of being able to display 
genuine evolutions of artificial natures in the computer, so that the 
simpler will generate the more complex through an emergent 
evolution. However, an absolute fidelity to that ideal would not make 
it possible to study systems as complex as the cognitive ones we 
are interested on. Even basic cognitive phenomena constitute a 
degree or level of organization of matter where access is difficult 
(because they present a huge complexity in physico-chemical terms 
and, therefore, in computational ones). Thus, the only option left in 
order to study these phenomena is to simplify the underlying 
materiality by designing certain features. 

Then, in this domain we have developed an artificial world model 
whose main interest is to study the cognitive capacities of the 
artificial organisms and their evolutionary consequences. This 
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approach can uncover various types of problems that are often left 
aside when the cognitive phenomenon is approached only at high 
levels (Belew, 1991).  

The paper is organized in the following way: section 2 presents a 
review of the properties of the systems that can be in various ways 
considered autonomous with respect to their environments at 
different degrees of complexity, in order to establish some criteria to 
estimate the complexity of cognitive phenomena. In section 3 a 
characterization of the origin of cognition is presented, as arising 
from forms of adaptation to the environment that are linked to the 
genetic specification of the system operation. In section 4 some 
basic ideas are presented on the modellization of what we consider 
basic cognitive capacities through models of simulation of artificial 
worlds. Finally, in section 5 these ideas are briefly discussed and 
some conclusions are proposed on the advantages of this approach 
to study cognitive problems. 

 
2. Levels of System-Environment Relationship 
 
A cognitive process only can take place in the frame of a system 

that maintains some degree of autonomy and self-determination in 
respect to its environment. However, we cannot consider that all 
natural systems where some form of autonomy is observed are 
cognitive. In fact, we can distinguish several degrees of complexity 
among autonomous systems, according to the kind of interaction 
they establish with their environments, and their artificial 
representation should vary according to this degree of complexity. 
We will try to make this idea clearer through a short course through 
self-organizing systems in a gradation of increasing complexity so as 
to establish some criteria on the features that are essential to model 
artificial cognitive systems. 

 
2.1. Self-maintained minimal systems 
 
The most elemental notion of a system that internally defines its 

identity in respect to its surroundings can be explored in the 
formation of systems connected by an operational closure. There 
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the system properties will critically depend on the components that 
take part and the relations that are established among them (Kampis, 
1991). 

In the context of Protobiology those systems are supposed to 
present a fundamental feature of life: the possibility of forming 
connected ‘protoorganisms’ whose relationships with the 
environment depend on the interactions of the molecular 
components of the system, the system being able to reproduce by 
fracture and, in some cases, to entirely reconstruct the set of 
relations that supplies its systemic identity. Even though, such 
reproduction is not mediated by the existence of ‘template’ 
components capable of self-replication; thus, reproduction presents 
a very low degree of reliability, and all system components are at the 
same hierarchical level.  

Models of this kind of systems have been developed by the 
formation of self-maintaining reaction networks, such as 
autocatalytic sets. Those are autonomous systems created to grasp 
the properties of the protobiological organization; they are based on 
molecular chemical reactions basically developed to pose the 
problem of the origin of life. Autocatalytic Sets (Kauffmann, 1986; 
Farmer, Kauffmann & Packard, 1986) are good models to study the 
minimal conditions of complexity of the systems where some kind 
of functional emergence will be found. Their main property is that 
starting from an initial set of components whose interaction is 
chemical (catalyzed cleavage or condensation of components), it is 
possible to observe connected sets of components forming a stable 
network, meaning by stability the capacity to present a coherent 
behavior in the presence of perturbations and to self-maintain in the 
continuous flow of energy and materials coming from the network 
environment. Therefore, an unstable network would lose 
connectivity, the reactions among components would not allow any 
global behavior and unconnected parts would appear in the whole of 
the system. 

This capacity of forming systems with an operational closure 
among components that stand at a single level has been viewed by 
the Autopoietic Approach (Varela, 1979; Maturana & Varela, 1984) 
as a basic and sufficient condition for life. The autopoietic 
organization would appear as the top of the following gradation of 
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self-organizing processes (Fleischacker, 1988): 1) dynamical 
systems; such as dissipative structures that do not imply 
transformation of matter (examples would be whirlwinds or Benard 
cells); 2) ‘oscillating’ systems as special cases of crossed 
autocatalytic reactions (for example, the Belusov-Zabotinsky 
reaction) that imply transformation of matter; 3) Autopoietic 
Systems, as networks of component production in watery mediums 
(for example, living cells). This kind of system is limited by a 
physical closure constructed by itself (membrane) and maintains its 
organization by exchange of matter and energy through that 
structure. The general idea of autopoiesis is self-production (Varela, 
1981), as a special form of self-organizing process that constitutes 
living systems. 

Anyway, even if the criteria of autopoiesis are necessary ones for 
a definition of life, they are not sufficient (Moreno, Fernandez & 
Etxeberria, 1990). Important features of living systems such as the 
possibility of transmitting their organization through self-
reproduction and therefore, undergo Darwinian evolution cannot be 
explained by this approach. In fact, the Autopoietic Approach 
deliberately leaves those properties aside as consequences of the 
‘autopoietic structures’ that should not be taken into account when 
defining the ‘autopoietic organization’ (Varela, 1979). They have 
important reasons to defend this view; the main could be the 
necessity to argue against another that attributes the most relevant 
role in the constitution of life to isolated components like nucleic 
acids. Instead their aim is to promote a vision of living organization 
that lies on the whole system, understood as a set of recurrent 
operations that continuously re-construct the system (Etxeberria, 
1992). Therefore, it is the necessity of blurring the role of 
informational components (templates) as underlying the living and to 
promote the idea of life as a property of the whole what underlies 
the autopoietic rejection of these properties (self-reproduction, 
evolution) from the definition of life. But, in our view, these 
capacities of living systems denote a degree of system complexity 
that cannot be given for granted. Minimal autopoietic systems 
cannot either reproduce with a reasonable degree of reliability nor 
evolve, therefore our conclusion can be that living systems are 
necessarily more complex that autopoietic systems. 
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2.2. Minimal Living System and environment 
 
Even if we do not wish to under value the importance of systems, 

such as the previously described as decisive steps both for the 
natural origin of life and for an eventual artificial one, from our point 
of view what in fact characterizes life is the formation of a self-
maintaining organization where there exist two entangled levels of 
components: one of a conservative type (like nucleic acids) and 
another of a dissipative type (like proteins) forming a functional 
closure. Pattee (1982) has theorized this organization as forming a 
‘semantic closure’. 

An organization defined by a ‘semantic closure’ can not only 
explain the self-maintenance and self-production that characterize 
the autopoietic organization, but also biological phenomena such as 
self-reproduction and evolution. Unlike the Informational Paradigm1 
in Theoretical Biology, a paradigm based on the ‘semantic closure’ 
will not view nucleic acids as trivial informational carriers, because 
their ‘meaning’ depends on a dynamic interpretation realized by the 
whole system. Unlike in the Autopoietic Paradigm, living 
organization does not rely merely on an ‘operational closure’ of a 
syntactic type, but the history of living systems endows each of 
them with hereditary structures that act as ‘symbols’ in the frame of 
the whole system.  

According to Pattee, the closure can be understood as an 
interdependence or complementarity between some dynamic 
elements, whose change is rate-dependent (proteins) and other 
symbolic ones, whose change can be described as rate-independent 
(nucleic acids). Rate-dependent dynamics account for the creative 
processes of the living, while rate-independent symbols can grasp 
the historically stabilized features of life. The molecular strings of 
genes only become symbolic representations when the physical 
tokens of symbols are directly recognized by the ‘translating’ 

                                                 
1 In other works (see, for example, (Moreno, 1988)), we have referred to the view 
based on the Central Dogma of Molecular Biology as the Informational Paradigm 
and have argued that the Autopoietic Paradigm should be considered as an 
alternative Paradigm in Theoretical Biology. 
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molecules (aminoacil-tRNA-synthetase), who exert arbitrary specific 
matching actions that result in protein synthesis. Then, once folded, 
proteins finally execute functional actions. Thus, without the rate-
dependent functional action of proteins, the ‘meaning’ of the genes 
would not exist, the semantic closure arises when the ‘translating’ 
molecules themselves are referents of the gene strings. Therefore, in 
the cell it is not possible to opt solely for one or the other of the two 
dimensions of the phenomenon without losing explanatory capacity, 
as would be the case if we think that all living phenomena arise from 
the properties of informational molecules (Informational Paradigm) 
or that all living phenomenology can be explained in terms of 
dynamic components constituting a coherent whole. 

In this organization, due to the replicating capacity of certain 
components in space and time, the system can ‘construct’ another 
similar one, it can reproduce itself reliably. This construction takes 
place in a space that is also constructed from the inside of both 
systems (original and copy). This capacity ensures: 1) to obtain a 
fracture plane in space that warrants division into two similar copies; 
2) to duplicate certain patterns which are indispensable for the 
identical operation of original and copy and 3) autonomy of the 
system, that is the operational closure of the process (Fernandez, 
1992). 

From this perspective biological information is not independent 
from the rest of the physico-chemical interactions taking place inside 
the system or in the system-environment relationship. Instead it is 
the capacity of certain physical entities of exerting diverse actions in 
respect to other system components or the whole system; it is not 
derived from intrinsic properties of system components such as 
their chemical composition, but from the specific network of 
interactions where it is exerted. To be able to talk of information 
there must exist alternative configurations; in the cell information can 
be stabilized and transmitted due to the existence of template 
components whose conservative order makes possible their 
functioning as ‘records’. 

In our view this two level organization generates all biological 
phenomenology. Rosen (1959) developed a series of works to 
model systems of this kind: M,R (Metabolic Repair) Systems, 
which are complex reaction networks that can evolve. In this kind of 
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network there is a reciprocal interaction between the metabolic units 
(M) and the repairing or genetic ones (R): each R unit of the system 
depends on the outputs of the M system and M units are controlled 
by the R units. This kind of interaction of entangled levels is what 
makes this system far more complex than the canonical reaction 
networks. Therefore M,R systems are not just models of the 
emergence of metabolisms (as for example, autocatalytic networks), 
but a network that that grasps the operation of the ‘semantic 
closure’. 

 
2.3. The cognitive specificity 
 
Biological organization can be characterized as a network of 

component production in which the existence of information is 
essential to synthesise the specific components (proteins) that 
control metabolic operation so that the operation of the system can 
be stable under the fluctuations of the environment. The network is 
closed by a semipermeable membrane through which there is a 
selective exchange of reactives and energy (mainly through 
membrane proteins). 

Even if systems pertaining to both of the previously considered 
categories (protoorganisms, minimal living systems) maintain a 
relation with their environments (it does not make sense to pose the 
problem of autonomy for an isolated system), the specific feature of 
the cognitive level is the appearance of a specialized subsystem for 
the regulation of that relation, so that the organism is able to develop 
a structural plasticity that can be modulated in ontogenetic time. 
Thus, cognitive phenomena bring about the possibility of forming 
material structures specialized in the maintenance of suitable 
relations with the environment. The origin of cognitive systems is 
related to the increase in complexity and selective specificity of that 
exchange of materials and energy between system and environment 
(self-organization and selection) and the construction of controls 
that allow the fixation and reproduction of those paths. 

The cognitive system accomplishes an integrating role for the 
organism, it is superimposed on the biological ground forming a 
hierarchical functional network. The characteristic behaviors of this 



8 

kind of organization appear in the upper level to which corresponds 
co-ordinates the lower ones, but its function cannot be isolated from 
the operation of lower levels. The cognitive system adapts the 
behavior of the organism to a changing environment acquiring 
knowledge in the course of its life and being open to the relation 
with the world. This relation is epistemic or informational, because it 
implies the detection of relevant aspects of the environment, 
encoding some physical patterns into informational ones (symbols) 
that finally trigger functional actions. The relation of the cognitive 
system with the biological one is pragmatic and, even if pragmatics 
cannot fully explain semantics (as syntax cannot either), it makes 
possible to understand the cognitive system as one of self-
determination for the organism. As a consequence, by the insertion 
of the cognitive system in that global context we can understand or 
analyze its representations as symbol systems characterized by a 
triple dimension of syntax, semantics and pragmatics. In fact the 
reduction of cognition to a single one of them has originated an 
intense debate in cognitive science around the idea of representation 
(Cariani, 1989); if the pragmatic aspect of biological functionality is 
left aside the semantic relation of referentiality of representations 
becomes intractable. 

 
3. From Adaptation to Learning 
 
According to the presentation of the last section, there seems to 

be a gap between what we considered Minimal Living Systems and 
Cognitive Systems. In order to find a link, we should first of all 
answer the following question: how can this internal system that 
correlates the behavior of the organism and the characteristics of the 
environment originate and evolve? The constitution of a minimal 
living system able to reliably self-reproduce implies the possibility of 
phylogenetic adaptation of populations of organisms to changing 
environments through processes of genetic change (what inspires 
Genetic Algorithms, a computational procedure of problem solving 
that we will see later). However, the capacities we are interested in 
do not depend only on phylogenetic adaptability, but require 
structures that are variable and modulable in somatic time. 
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3.1. Adaptation and the origin of the sensori-motor loop 
 
Besides phylogenetic adaptation, all existent living systems 

possess some mechanism of ontogenetic adaptation. Basically, 
ontogenetic adaptation consists in a mechanism of functional self-
modulation of the metabolic network. In its simplest form, 
adaptation is achieved through the selective activation of the 
pertinent genes when certain environmental conditions are detected. 
This kind of adaptation can be understood as ways of connecting 
detection mechanisms with those that regulate the genetic repertoire, 
producing changes in metabolic paths that will not have 
reproductive consequences, but can enhance the production of 
components that trigger precise functional actions. 

These detection mechanisms constitute the most elemental version 
of perception. Several authors (Pattee, 1982; Conrad, 1988) have 
proposed that the classifying capacity of the substrate-recognition 
by enzymes is the most elemental form of a detection process. This 
hypothesis is supported by the fact that all the increase of 
complexity of epistemic processes that arises in biological evolution 
(including the functioning of the nervous system) is grounded on 
mechanisms of enzyme recognition (Koshland, Goldbeter & Stock, 
1982). But a process of perception entails more than the enzyme 
pattern recognition capacity by the enzyme. Pattee (1992) exposes 
more accurately his first position, by stating that the ‘detection’ (or 
perception) occurs when pattern recognition is arbitrary, repeatable, 
stable and with operative consequences. Besides this process is 
rate-independent, because it must be distinguishable from merely 
dynamical processes and certain record or memory is necessary 
which, finally, can be reduced to that separation of rates or scales. 
From Pattee's point of view, perception is an intermediate process 
between dynamics (physical laws) and computation (the process of 
symbol manipulation by rules): even if its result were not symbolic 
and computable, it must be some kind of record and must be 
distinguished from dynamics. Intuitively that distinction brings forth 
the idea of some kind of store that keeps the result of perception to 
deliver it operatively later.  
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The problem of this position is that in order to consider 
something as perception, it is indispensable to be able to 
functionally recognize/evaluate the discrete output as a significant 
event/structure in respect to what it presumably ‘detects’. As an 
example, the enzyme recognition of the substratum is not in itself an 
act of perception (of the substratum) unless there is an operationally 
closed network that interprets the aforementioned change of enzyme 
configuration (for example, by a change of the metabolic path that 
synthesises certain product). In the case of the immune system, 
components that do not belong to the operationally closed system 
are molecularly recognized and evaluated by the network itself, 
which can distinguish between what is or is not its own. But a 
phenomenon of this nature takes place also in the cellular domain, 
because it is the cell itself --or, better, the network that defines the 
reproductive identity of the cell-- which evaluates or recognizes the 
enzyme changes according to certain events/structures of the 
environment. Thus, when certain membrane proteins or a specific 
set of such molecules (Kremen, 1992) receive specific physical 
patterns, they undertake a configurational change that triggers 
metabolic-motor reactions; these ones, in their turn guide 
subsequent perceptions, so that a new functional closed loop is 
formed. 

So, a system with mechanisms of perception must be essentially 
functional, while the converse is not true, functionality is not a 
sufficient condition to speak of perception. In the case of a minimal 
biological system like the one presented in 2.2., only able to maintain 
and reproduce itself, the enzymes recognizing genetic information 
should not be considered as ‘sensors’, but only as generically 
functional components, because there is not any previous or more 
basic mechanism for the functional evaluation of the different 
metastable states of those enzymes. As a consequence, there must 
pre-exist a system able to self-define its identity.in order to be able 
to conceive even the most elemental process of perception that 
refers to something external. This way the changes triggered by the 
perceptive process could modulate the behavior of the system in 
correlation with the external or environmental changes that have been 
‘recognized’. 
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Thus, a perceptive process starts with the detection of certain 
changes taking place in the boundaries of the organism. It is 
basically a selective process of pattern recognition linked with 
certain functional consequences for the system which performs it. 
To fix the sensorimotor loop, living systems should selectively 
discard (either phylogenetically or/and ontogenetically) a great 
amount of components and metabolic paths. In this way, epistemic 
coupling is achieved through a recursive interaction with the 
environment (producing its modification), as a mutual and 
progressive organism/environment adjustment until certain stability 
points are reached. The organism/environment relation can be seen 
as a closed correlation between perceptions of the relevant 
properties of the environment --its ‘affordances’ in terms of Gibson 
(1979)-- and motor actions on it. Both processes are 
complementary in the sense that perception must be active (the 
organism moves towards its goal object, acts to perceive it) and 
action must be guided by perception. Perception is a requisite for 
optimum action, but both are entangled in a closed loop. 

 
3.2. Cognition and the development of adaptive sensors and 
effectors 
 
From the viewpoint of its origins cognition and learning arise as a 

result of greater complexity of the sensorimotor loop. Functionally 
speaking this increase in complexity is directed to the control, 
integration and hierarchical organization of an increasing number of 
biological activities. Although cognition does not define the set of 
biological needs, it is directed to the optimization of their realization. 
Therefore, even if cognition cannot be studied apart from biological 
functions, it has a different specificity: their global integration 
through mechanisms that imply informational processes. 

While in purely adaptive organisms perception is, as we said 
before, the direct cause of certain metabolic-motor actions, in 
cognitive organisms the physical patterns impinging on sensors are 
transformed in trains of discrete sequences (which constitute 
information) that modify the state and dynamics of a network of 
connections where sensory information is processed. Unlike in 
metabolic networks, where there is no distinction between units and 
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connections (Minch, 1993), in neural networks the stress is made on 
the variability of connections and on the control (by/of the very 
network, throughout other layers or global patterns) upon such 
structural variations. Therefore in the former case structural changes 
take place only in the frame of phylogenetic evolution, while in the 
latter this kind of process can also take place in somatic time 
(learning). That is why the concept of (epistemic) information 
processing needs the development of a system of channelling as rich 
and modulable as possible. 

When high level cognitive functions are being considered, most 
research strategies emphasize essentially the increase in complexity 
of the intermediate net connecting sensors and effectors. Even if, no 
doubt, this is a fundamental factor, one should not forget that 
evolution toward more complex forms in the system processing 
sensory information is correlative to the complexity of sensors and 
effectors. Often, when we face the task of building artificial models 
of cognitive systems, this is left aside or under valued, mainly 
because cognition is not approached from a radically evolutionary 
perspective, that is, as a development of the sensorimotor loop. At 
higher levels of cognition the increasing complexity of the different 
elements of the system makes them appear as nearly autonomous 
subsystems. But it is an empirically verifiable fact that in natural 
cognitive systems there is a closed and tangled correlation between 
the development of sensors, the information processing network 
and effectors and cognitive science should take it into account. 

This is why we think that if the model of artificial cognitive 
systems we are going to develop presents a neural network to allow 
learning, its sensors and effectors must be also adaptive. By 
adaptive sensors we understand those able to change the mapping 
between the type of output signals and their functional 
consequences through learning, so that the meaning assigned to the 
result of the sensor can vary according to the different 
circumstances of the environment in which it is produced and, thus, 
it is modifiable by learning. Given that this principle in a converse 
order can be applied to effectors, in this work we will focus on the 
study of sensors. 
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4. Basic Ideas to model Cognitive Systems in Artificial 
Worlds 

 
In order to place the problem of modelling a cognitive system in 

its biological ground, we should move from the domain of Artificial 
Intelligence (AI) to the one of Artificial Life (AL), where 
evolutionary modelling of autonomous systems (Maes, 1990; 
Brooks, 1992; Harvey, Husbands & Cliff, 1992) focuses on the 
necessity of devising ways to approach their study as physical 
embodied systems, either biological or artificial (Varela, Thompson 
& Rosch, 1991). Contrary to the high-level, disembodied 
perspective of Classical Artificial Intelligence, its goal is to 
understand intelligence as a form of adaptivity that has evolved 
phylogenetically and is ontogenetically developed. The strategy to 
study is not to start modelling high level intelligent behavior such as 
theorem proving or playing chess as processes developed 
independently of their biological background, but to develop a 
lifelike structure (real or simulated) for the cognitive agent. 

Some of the issues emphasized by the new approach are: 1) the 
importance and pre-eminence of low level capacities for an accurate 
notion of intelligence, therefore 2) the necessity of studying 
sensorimotor loops underlying behavior, so that 3) action as a 
control of perception, arising from the situatedness of an agent in its 
environment or ecological niche. 

Work in this field is based both on robots (realizations) and 
simulations, as far as simulations are computational models of 
physical interactions underlying adaptivity and cognition. 
Realizations have the difficulty of how to implement evolution 
connected with reproduction, so it is a usual practice to combine 
both methods; it is not currently possible to create a building 
procedure robust enough to allow genetic variations, and simple 
enough to be implemented on a small machine. A review of the 
simulation/realization controversy in this field can be found for 
example in Brooks (1992) and Harvey, Husbands & Cliff (1992). A 
theoretical discussion of the problem in Pattee (1989). 

In order to construct the structure of the artificial organisms, 
evolutionary modelling uses a procedure to design cognitive 
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architectures inspired by the operation of Darwinian evolution: 
Genetic Algorithms (GA). GAs provide an automatic method for 
structure development that permits to obtain interesting architectures 
from a population of random possible ones. This population 
undergoes an evolutionary process inspired by the genetic 
recombination of sexual reproduction (mutation and crossover) and 
selection is exerted upon it depending on a fitness function designed 
according to the desired behavior. 

 
4.1. Evolution of the Artificial World 
 
Thus, our effort is directed toward the creation of a simulated 

Artificial World (AW) were artificial organisms (AOs) can be found. 
All processes of the AW, either physical or epistemic (such as 
perception, learning or anticipatory behavior) take place in this 
artificial world, so they are simulations. 

Following the wise advice of nature, we will use algorithms that try 
to mimic the way Nature works: Genetic algorithms. In them several 
solutions to a problem (in our case, the problem of surviving in an 
AW) are encoded in a ‘genome’, and they compete to be the best 
solution. Genetic algorithms will allow us to implement ‘evolution’, 
by coding all somatic characteristics of the AO (its ‘body’) in a 
genome. Only the fittest are allowed to reproduce, by mixing their 
genetic information (a string of 0s and 1s) with other good 
solutions. 

Until now most of the effort has been channelled in the direction 
of modelling the cognitive structure of the autonomous agent, that 
is, its nervous system. The search of forms of development of 
neural networks (phenotypes) starting from the genotypes specified 
by the symbol string optimized/evolved by the genetic algorithm is a 
very difficult one. The use of genetic algorithms to encode neural 
networks has had an important development in the literature of the 
area --see, for example, Ackley & Littman (1992)--, nevertheless 
until now no biologically plausible form of representation has been 
proposed to understand in constructive terms the relation between 
genotype and phenotype for the artificial living systems. 
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Anyway, the field seems to be sensitive to the necessity of 
coevolving agent morphologies as well as neural networks (Brooks, 
1992; Harvey, Husbands & Cliff, 1992) so that 1) the biological 
neural structure has the function of producing behavior, 2) behavior 
becomes adapted to a certain ecological niche and 3) the structure 
allowing adaptation has been comformed by evolution and can 
evolve and 4) the nervous system coevolves with the rest of the 
agents morphological traits. 

The main problem to achieve it is the use of variable-length genes 
in the genetic algorithm, that would allow for open-ended evolution 
(usually by a enlargement of the genome, as shown in Harvey 
(1992). Nevertheless, this problem has been solved in several ways, 
as has been proposed by Koza (1990) and other authors (for 
instance Goldberg, Deb & Kob (1991) with their mGA paradigm). 
A system with open-ended evolution should use one of these 
algorithms. 

In our model, the genome contains a complete description of the 
AO, including some ‘metabolic’ and ‘somatic’ characteristics 
(speed and energy consumption, for instance). The neural net of 
each AO will allow it to learn departing from its genetic information, 
changing the values of the connections between sensors and 
effectors continuously, thus, changing structurally. Neural nets 
combine several units (threshold-logic units), connected with each 
other, in the same way as biological neurones. The value of the 
connections can vary, making neural nets learn, or associate inputs 
with outputs in a meaningful way (working, for instance, as 
associative memories). These neural networks are correlated to 
features of their environments and react toward changes by varying 
their configuration in a proper way as different couplings take place. 
The adaptive sensors are also implemented by neural nets, and 
effectors are adaptively connected between them and the neural net. 

The genetic description is compiled (in the computer language 
sense) at the time of birth. In principle, this process is deterministic, 
i.e., compiled structures follow necessarily from its encoded form. 
Nevertheless, as we said before, new forms of representation should 
be sought in which development were similar to the biological, so 
that the phenotypic structures were described in the genome only 
loosely, while other dynamical properties would follow the genome 



16 

in a functional way, (trying to simulate the duality between 
informational and dynamical levels that we have emphasized in 
subsection 2.2.) or could arise from interaction and competition 
between neurones, as proposed by Edelman (1987). Anyway, even 
if it is very difficult to think of ways of achieving this, the genome 
complexity and the coding of the neural net structures are positive 
steps towards it. 

In order to evaluate the efficiency of these programs, besides 
watching the AO perform its duties within the world, several off-line 
tools are built for the program edition, execution, and alteration. For 
instance, a graphical representation of the cognitive subsystem is 
useful to evaluate differences among subsequent generations, or 
differences between different ‘tribes’ in the world, if something of 
the sort emerges. 

 
4.2. Cognition of Artificial Organisms 
 
Right at this moment, research in the field of AL has not 

developed any truly cognitive system, in the sense that it is really 
embedded in an organismic morphology and all its structure varies 
in a phylogenetic as well as an ontogenetic scale. The vast majority 
of artificial organisms --see for example,  Ackley & Littman (1992)-- 
show only a moderate grade of adaptation, usually through the 
change of the neural net weights, being change at the level of the 
neural net structure far less common; most systems are currently 
lacking adaptive sensors and effectors. 

A cognitive AO must obviously learn inside the AW. Learning 
does not mean only change of internal rules, it implies also the 
possibility of assigning new ‘meanings’ to the features of the 
environment that are detected (inputs) as the interaction of the AO 
with the environment takes place in different circumstances. This 
would mean that learning is mainly directed toward the realization of 
different biological needs or functions, that can perhaps change or 
develop in ontogenetic time (escaping from predators, hunting, 
mating, etc. are functions that will have to be fulfilled at different 
stages of the development of the AO). It requires the development 
of adaptive sensors, capable of growing and varying the realized 
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mappings according to learning (and similarly, the possibility of 
developing new effectors). 

In AL, a ‘tabula rasa’ approach does not usually give good 
results. The organisms that populate the artificial world in the first 
place should have some innate capabilities (for instance, they should 
have at least one sensor and one effector that would allow them to 
move, and some kind of reflex or motivation to move unless they 
find food). Evolution requires many AOs present in the world at the 
same time because the ‘fitness landscape’ to be explored is huge 
and it is the only way of being sure that a sufficient amount of viable 
organisms will be created. 

In our model the neural net structure remains frozen as it has been 
created, and only weights change during its lifetime, accounting for 
learning. These weights, that reveal the ontogenetic learning of the 
organism, are not inherited by the next generations. If new 
connections are created as a consequence of evolution, their values 
are randomly set. 

 
4.3. Adaptive Cognitive Subsystems 
 
We can analyze our AOs in terms of their sensitive, processing 

and effector subsystems. These must evolve and adapt 
phylogenetically, therefore the algorithms used must be adaptive in 
the ontogenetic and phylogenetic scales. New sensors should be 
developed during evolution, and the processing subsystem should 
make new associations between sensors and effectors, giving new 
meaning to inputs, while the AO is ‘living’ (that is, during the finite 
time it is allowed to function inside the simulated world). 

 
4.4. Adaptive Sensors 
 
Sensors cannot be understood if they are not related to a world, 

their function is to react to certain characteristics of the world that 
surrounds the AO, and process physical data in order to extract 
high-level sensory information: size of the object in front, odour, 
distance and so on. 
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As we have already said, the AO sensors can be adaptive in two 
senses: 

• in a phylogenetic scale, they can develop the capacity of 
detecting new features of the environment. New sensors can be 
developed, according to the ‘physical’ characteristics of the world. 

• in an ontogenetic scale, they can vary the internal meaning 
assigned to previously detected inputs, as the functioning of the 
sensorimotor loop acquires new experience of its surroundings. 
This is achieved by variations in the values of the connections 
among sensors, sensors and effectors, and sensors and the neural 
net. 

How can these adaptive sensors be simulated? There are several 
problems to develop them from scratch, that is, from an initial 
system with random neural connections, for it would take aeons of 
computer time, and evolution surely evolved sensorimotor loops 
from systems that are already very complex, as was explained in 
sections 2 and 3. Research on the properties of cognitive systems 
from an evolutionary approach is still in a rather primitive stage. 
Indeed, most researchers working in the modellization of sensors 
usually create neural networks with fixed weights, with no learning, 
and connectivity patterns and strengths taken from experimental 
data. Even these simple sensors are of such a computational 
complexity that we cannot imagine to develop a population of 
beings, each with a 16x16 retina. Raw information picked up by this 
retina should be then processed to obtain high-level information. 
This is a problem that falls into the domain of artificial vision, but 
AL prefers minimalist versions that can help understand more 
general features of life (or lifelikeness), such as adaptation to an 
environment rather than detailed biological structures. Perhaps the 
computational power and the development of the field will make 
more complex models possible in a few years, but not in the current 
state of affairs. 

For the moment we take what we call a ‘toolbox approach’. We 
can think that we already have all these sensors (distance, colour, 
size, shape) potentially developed, we put then in a ‘genetic 
toolbox’, and thus they can evolutionary exchange into another in 
reproduction or develop new ones, as a response to the presence of 
a new stimulus in a world. Each sensor is genetically specified to be 
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sensitive to a certain type of physical properties of the world. This 
includes a range in which it is effective and some information about 
the features it is able to detect. 

Obviously, sensors must be sensitive to all the characteristics of 
objects of the world. One way of doing that is to define an Object 
Description Language (ODL) to perform couplings between relevant 
features of the AW and an OA sensor. Couplings are realized by 
some adjustment or matching rules between sensor specificities and 
features of the world described by this ODL. Due to this object-
sensor interaction the AO can act according to the inference of the 
object characteristics realized by its sensors. 

Our world would be composed of a potentially unlimited number 
of objects, all possible programs written in this language. The 
matching can help the OA act in the AW because the ODL includes 
qualities like whether the object is movable, whether it can be 
decomposed in smaller units, and so on. In this way, the AO can 
interact with the world, and in turn, the latter can interact with it. 

Every AO has an adaptive sensor, or a set of them, only sensitive 
to some aspects of the objects of the world. A sensor fires if the 
rule it contains (for instance, BLACK and BIG) is met by the 
object/objects in front. Every time a rule fires, its firing is passed on 
to the neural network that constitutes the information processing 
subsystem of our AO. This way, adaptive sensors are not only 
sensitive to intrinsic object characteristics, but also to relational 
ones, like distance, orientation and speed. 

Obviously, and taking into account what has been previously said 
about the coevolution of cognitive subsystem (entangled in the 
whole organism, that is, in its biological structure), it does not make 
sense to study the evolution of sensory organs as parts that are 
isolated from the rest of the cognitive system. Sensors coevolve 
with the neural net that processes their information, and the effectors 
that allow the AO to move to the perceived object, change it or get 
away from it. 

 
4.3.2. Neural Net Subsystem 
 
As we have already said, the task of implementing a neural 

network of variable structure and size, and to code it in a gene is 
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difficult, because the goal of simulating a complete world restricts 
the use of the available computational resources. Once again, we 
cannot pretend to evolve complicated learning algorithms from 
simple rules. Besides, each of these algorithms would have such a 
huge set of inputs (present and previous states and weights of the 
network) and outputs (variation of all weights), that even a simple 
set of rules would be computationally cumbersome. Thus, we can 
only hope to label each weight or directed connection as Hebbian or 
anti-Hebbian (in fact all learning rules can be reduced to this one), 
and let the structure change genetically. Each neurone is then 
labelled as input, output, or pass through, and information cascades 
from inputs to outputs, every discrete step going from one neurone 
to the next one. Information from several time steps is then 
concentrated in the output neurones. 

The genetic coding of the neural network will include: 
• A connection map, that tells how many neurones there are, and 

its connections. 
• A neurone labelling, that classifies each neurone as input, output 

or pass-through. 
• A connection or weight labelling, possibly mixed with the first, 

that tells whether the connection is anti-Hebbian or Hebbian. 
• Initial values of weights. 
The length of this part of the genome and its meaning can vary 

phylogenetically, making possible the development of a potentially 
infinite amount of neural networks. 
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4.3.3. Adaptive Effectors 
 
In order to simulate effectors, we will take the same approach than 

for sensors. Effectors manipulate the world, affect some 
characteristics of the objects of the environment or change the 
spatio-temporal relation of the AO with respect to the world. 
Features of the objects of the world change as events take place, but 
this variation will only be appreciated in the following step, because 
in an AW time is discrete. 

Effectors are also genetically coded. For instance, we are not 
concerned with how deambulatory mechanisms are developed and, 
therefore, we will use a toolbox approach too. There can be a finite 
amount of effectors (like walk, eat, mate, emit sound), which can 
appear or not in an AO. These effectors are connected between 
them, to the sensors and to the neural net, so that sensorimotor 
loops can emerge. 

 
4.4. Current Model and Work in Progress 
 
A system previous to this has been implemented with the aim of 

studying several problems of population evolution in function of the 
cognitive capacities of the AOs (Merelo, Paton et al., 1992; Merelo, 
Moreno & Moran, 1992; Merelo, Moreno & Etxeberria, 1993). Now 
we intend to improve this model by applying to it the ideas that have 
been previously exposed on adaptive sensors. Even if our ‘toolbox 
approach’ does not make possible to study physical perception, it 
is useful to see other emergent features of the relation of the 
cognitive system and biological function in evolution. Several 
improvements of this model are currently being studied: 
development of organisms, relation between innate and developed 
structures, differential evolution of sensors, coevolution of 
organisms and environments, etc. so that the model will hopefully 
cover other theoretical issues apart from those presented in sections 
2 and 3. 

 
5. Conclusion 
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The attempt to pose the problem of the appearance of new 
cognitive capacities in relation to the biological structure of 
organisms, so that it is possible to observe the evolution of 
biological functions (feeding, reproducing, etc.) and their fulfilment 
via cognitive processes in artificial worlds is a great challenge for 
cognitive science. Traditionally it has focused on the study of high 
level phenomena and has considered that the underlying biological 
structure played a small if not insignificant role in the realization of 
the different cognitive tasks: perception, learning and memory. 

This way, our model could overcome some epistemological 
limitations of current connectionist approaches of cognition. In such 
approaches, the cognitive systems are not able to autonomously 
find solutions for certain tasks, nor to determine their goals by 
themselves or change the ones specified from the outside (Van der 
Vijver, 1991). As a consequence, the (relative) self-organization 
occurring in the cognitive process is external and not linked to the 
constructive self-organization of the very cognitive system. In our 
opinion, the root of this unsatisfactory situation lies in the fact that 
the cognitive process is not considered as related in its origin to the 
self-reproductive one (Moreno & Etxeberria, 1992), and this has 
some consequences in the debate on the problem of representation 
in cognitive science. 

Critics of classical AI maintain that the knowledge an organism 
has of its environment does not rely on a symbolic representation 
that can be specified from the outside, but it is not easy to explain 
how structures that are functional for the organism can originate and 
accomplish an epistemic function in relation to the environment. 
Very often this problem has been taken so far as to the adoption of 
anti-representationalist positions of different sorts (Bersini, 1992), 
for example, when it is defended that most of behavior is based on 
sensorimotor automatisms that do not require internal 
representational models. This case is usually argued defending either 
that knowledge depends on the real or detailed structure of the 
environment whose perception guides action without the need of 
forming internal structures (Brooks, 1991), or that representation is 
the result of the structure of the cognitive organism itself and 
information can be considered embodied in the internal constraints 
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of the organization of the subject, which can make sense out of 
certain perturbations coming from the outside (Varela et al., 1991). 

The first position reduces the problem of cognition to a mere 
reactivity towards the environment and, even if it can lead to an 
interesting engineering strategy that is biologically more realist than 
the one of previous AI, epistemologically it erases the problem of 
cognition, for there is no cognitive subject left. The second one 
underestimates the problem of cognition in a similar way, because 
the transformations undertaken by the subject in relation to the 
environment cannot be considered as knowledge of anything, as 
there is no environment to be known. 

A study of cognitive processes grounded in the biological 
structures of organisms like the one we have proposed here makes it 
possible to re-settle the problem of cognition as a phenomenon of 
construction of a cognitive system in the interaction with its relevant 
environment, a process through which hierarchical representational 
structures are created with a functional value associated to the 
biological survival of the AO. 
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