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Emergence of new signal-primitives in neural systems 

 
Emergence is the process by which new structures and functions come into 
being. There are two fundamental, but complementary, conceptions of 
emergence: combinatoric emergence, wherein novelty arises by new 
combinations of pre-existing elements, and creative emergence, wherein 
novelty arises by de novo creation of new kinds of elements. Combinatoric 
emergence is exemplified by new strings constructed from existing 
alphabetic letters, whereas creative emergence is exemplified by the 
addition of new kinds of letters to an alphabet. The two conceptions are 
complementary, providing two modes for describing and understanding 
change: as the unfolding consequences of a fixed set of rules or as new 
processes and interactions that come into play over time.  
Within an observer-centered, operational framework, the two kinds of 
emergent novelty can be distinguished by what an external observer must 
do in order to successfully predict the behavior of an evolving system. 
Combinatoric and creative emergence can be operationally distinguished by 
changes in apparent effective dimensionality. Whenever a new independent 
observable is added to a model, its dimensionality increases by one. A 
system that only recombines requires no new observables, and does not 
expand in effective dimension. In contrast, a system that creates new 
primitives requires new observables for its description, such that its 
apparent dimensionality increases over time.  
Dimensional analysis can be applied to signaling systems. Signals have two 
basic functional properties: signal-type (category, variable, type) and signal-
value (state, value, token). These properties can be conveyed by a variety 
of means: by the signal’s physical channel, by the internal form of the signal 
(waveform, Fourier spectrum), by its time of arrival, and by its magnitude 
(average power). Neural coding schemes can similarly be based on which 
neurons fire, which temporal patterns of spikes are produced, when volleys 
of spikes arrive, or how many spikes are produced. Traditional 
connectionist networks are discussed in terms of their assumptions about 
signal-roles and neural codes. For the most part, connectionist networks 
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are conceptualized in terms of new linkage combinations rather than in 
terms of new types of signals being created. 
Neural networks that increase their effective dimensionalities can be 
envisioned. Some kinds of neural codes, such as temporal pattern and 
time-of-arrival codes, permit encoding and transmission of multidimensional 
information by the same elements (multiplexing). We outline how 
synchronous time-division and asynchronous code-division multiplexing 
might be realized in neural pulse codes. Multidimensional temporal codes 
permit different kinds of information to be encoded in different time 
patterns. Broadcast-based coordination strategies that obviate the need for 
precise, specified point-to-point connections are then made possible.  
In such systems new signal types arise from temporal interactions between 
time-coded signals, without necessarily forming new connections. Pitches of 
complex tones are given as examples of temporally-coded, emergent 
Gestalts that can be seen either as the sums of constituent micro-patterns 
(combinatoric emergence) or as the creation of new ones. Within these 
temporally-coded systems, interacting sets of neural assemblies might 
ramify existing, circulating signals to construct new kinds of signal primitives 
in an apparently open-ended manner. 
 
Key words : combinatoric and creative emergence; dimensionality; 
observables; signaling systems; temporal coding; neural assemblies. 
 
L’émergence de nouveaux signaux primitifs dans les systèmes 
neuronaux. L’émergence est le processus par lequel de nouvelles 
structures et fonctions se mettent à exister. Il y a deux conceptions 
fondamentales de l’émergence, qui sont en fait complémentaires : 
l’émergence combinatoire, où la nouveauté provient de nouvelles 
combinaisons d’éléments préexistants ; et l’émergence créatrice, où la 
nouveauté naît de la création de nouveaux genres d’éléments. Ces deux 
conceptions sont complémentaires en ce qu’elles procurent deux manières 
de décrire et de comprendre le changement : comme le déploiement des 
conséquences d’un ensemble préétabli de règles d’un côté ; et comme de 
nouveaux procédés et interactions qui entrent en jeu au cours du temps, de 
l’autre. 
Emergence combinatoire et émergence créatrice peuvent être distinguées 
de manière opérationnelle par des changements dans la dimensionalité 
effective telle qu’elle apparaît à un observateur. Un système qui se contente 
de recombiner ne requiert aucun élément observable nouveau, et sa 
dimension effective n’augmente pas. Par contre, un système qui crée de 
nouveaux éléments primitifs requiert de nouveaux observables pour sa 
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description, de telle manière que sa dimensionalité s’accroît au cours du 
temps. 
L’analyse dimensionnelle peut être appliquée aux systèmes de signaux. Les 
réseaux connexionistes sont, le plus souvent, conceptualisés en termes de 
combinaisons de nouveaux cablages plutôt qu’en termes de création de 
nouveaux types de signaux. Il est cependant possible de concevoir des 
réseaux neuronaux qui augmentent leur dimensionalité effective. Certains 
codes neuronaux, comme les motifs temporels et les codes de temps 
d’arrivée, permettent l’encodage et la transmission d’une information 
multidimensionnelle par les mêmes éléments. Dans le cadre de ces systèmes 
temporellement codés, des séries d’assemblages neuronaux en interaction 
peuvent s’appuyer sur des signaux existants de manière à construire des 
ramifications de nouveaux genres de signaux primitifs, et ce indéfiniment 
semble-t-il. 
 
Mots-clés : émergence combinatoire et émergence créatrice ; 
dimensionalité ; éléments observables ; systèmes de signaux ; codage 
temporel ; assemblées de neurones 
 

TWO BASIC CONCEPTIONS OF EMERGENCE 

 Emergence concerns the means by which novelty arises in the 
world. Intuitively, emergence is the process by which new, more 
complex order arises from that which is, in some sense, simpler or 
more predictable. As such, images of birth, development, and evolution 
infuse our notions of emergence.1 These images provide explanations 
for how novelty, spontaneity, and creativity are possible. They provide 
us with accounts of how complex organizations arise and become 
further elaborated, be they physical, chemical, biological, 
psychological, or social formations.  

 All around us we see the complex organizations that are the 
emergent products of biological, psychological and social processes. 
Our current discourses on emergence consequently encompass a wide 
range of phenomena: the appearance of new material structures 
(thermodynamic emergence)2, new formal structures (computational 

                                                 
1 The domain of emergence is qualitative, unpredicted change. Obviously, all is not 
change, and all change does not involve novelty, so that emergentist accounts are but 
one mode of explanation among many. Emergence does not explain why things remain the 
same or recur in familiar patterns or why things have the basic properties that they do, 
e.g. why there should be gravity or consciousness. 
2 (Denbigh, 1975; Prigogine, 1980) 
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emergence), new biological structures and functions (emergent 
evolution)3, new scientific theories (emergence vs. reduction)4, new 
modeling relations in observers,5 new percepts,6 new ideas7, new 
notational systems, and new economic and social relations.8 Despite 
very different subject matters, these discussions share many formative 
concepts and internal debates. 

 

                                                 
3 (Bergson, 1911; Morgan, 1931) 
4 (Nagel, 1961) 
5 (Rosen, 1978; Rosen, 1985; Kampis, 1988; Cariani, 1989b; Kampis, 1991b; Rosen, 
1991; Cariani, 1992a) 
6 See essays on perceptual learning in (Gibson, 1969; Gibson, 1991). 
7 As Piatelli-Palmarini so elegantly pointed out (Piatelli-Palmarini, 1980), the debate 
that occurred between Piaget, Chomsky, and Fodor ostensibly over the origins of new 
ideas was really a debate over the existence and nature of emergent novelty in the world. 
The two poles of the debate were held by Fodor, who defended an extreme preformationist 
view (all learning is belief-fixation, from a fixed repertoire of possible beliefs), and 
Piaget, who defended an emergentist view (qualitatively new concepts are created anew). 
(van de Vijver, 1991) discusses emergence in the context of connectionist representations. 
Issues related to the formation of new cognitive primitives are currently under discussion 
in (Schyns, Goldstone and Thibaut, in press). 
8 The emergence of new social structures has been discussed in terms of structural-
evolutionary processes (J. Habermas), andin terms of self-organizing systems and 
spontaneous orders (F. Hayek). 



Emergence of new-signal-primitives in neural systems 5 
 

D

F
1

5

1-2-F

M

D-F-1

2-F-M

M-D

1-M

Processes for
combining primitives

Combinatoric emergence:
New combinations

of pre-existing primitives

Creative emergence:
De novo creation of new primitives

D
F 1

5

1-2-F

M

D-F-1

2-F-*

M-D

α-M

α *

Process for
constructing

new
primitives

Figure 1.  Combinatoric emergence and creative emergence.

Sets of
possible

combinations
of primitives 2-F-M

Sets of primitives
(axioms, atoms, states)

Add  *, α

 
 

Two fundamental conceptions of emergence can be distinguished: 
combinatoric emergence and creative emergence. These two accounts 
of the origin of novelty parallel notions of the origin of order: "order-
from-order" vs. "order-from-noise."9 Where order comes from order, 
novelty is but a preformationist unfolding of latent possibility; where 
order arises from noise, chaos, or formlessness, novelty entails de novo 
formation of new realms of possibility. Both kinds of emergent orders 
are built up from basic sets of possibilities that constitute the most 
basic building blocks of the order, its “primitives.” Emergence then 
entails either the appearance of new combinations of previously 
existing primitives or the formation of entirely new ones. The 
primitives in question depend upon the discourse; they can be structural, 
material "atoms"; they can be formal "symbols" or "states"; they can be 
functionalities or operations; they can be primitive assumptions of a 
theory; they can be primitive sensations and/or ideas; they can be the 
basic parts of an observer's model. To say that an entity is "primitive" 
relative to other objects or functions means it cannot be constructed 

                                                 
9 (Maruyama, 1977; Piatelli-Palmarini, 1980) 
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from combinations of the other entities, i.e. its properties cannot be 
logically deduced from those of other entities. 

NOVEL COMBINATIONS WITHIN SETS OF EXISTING PRIMITIVES 

Combinatoric emergence assumes a fixed set of primitives that are 
combined in new ways to form emergent structures. Thus in biological 
evolution, new genetic DNA sequences arise from combinations of pre-
existing nucleotides, codons, and codon-sequences. Microevolution is 
seen in terms of novel combinations of pre-existing genes. Likewise, 
new, emergent structures and functions are thought to arise from novel 
combinations of previously existing molecular, cellular, and organismic 
structures and functions. In psychology, associationist theories hold 
that emergent perceptual states arise from novel combinations of pre-
existing primitive sensations. Whether cast in terms of platonic forms, 
material atoms, or mental states, combinatoric emergence is 
compatible with reductionist programs for explaining macroscopic 
structure through microscopic interactions.10   

This strategy for generating structural and functional variety from a 
relatively small set of primitive parts is a powerful one that is firmly 
embedded in many of our most advanced informational systems. In the 
analytic-deductive mode of exploration and understanding, one first 
adopts some set of axiomatic, primitive assumptions, and then explores 
the manifold logically-necessary consequences of those assumptions. 
In the realm of logic and mathematics, the primitives are axioms and 
their consequences are deduced by means of logical operations on the 
axioms. Digital computers are ideally suited for this task: to generate 
combinations of symbol-primitives and logical operations on them that 
can then be evaluated for useful, interesting, and/or unforeseen formal 
properties. In the field of symbolic artificial intelligence (AI) these 
kinds of symbolic search strategies have been refined to a high degree. 
Correspondingly, in the realm of adaptive, trainable machines, directed 
searches optimize prespecified combinations of features and actions 

                                                 
10 See (Klee, 1984; van de Vijver, 1991) for discussions of micro-macro relations and 
emergence. The alternative to microscopic rules unilaterally producing macroscopic 
orders is to envision mechanisms by which macroscopic orders can alter microscopic 
interactions (e.g. a lizard crawling onto a sunny rock to alter its body temperature, 
thereby changing the boundary conditions for its own microscopic biomolecular 
processes). This bidirectional causation is a means by which qualitatively new kinds of 
structures and functions, such as new control structures, can be created (Pattee, 1973a; 
Pattee, 1973b; Rosen, 1973). Combinatoric emergence assumes exhaustive descriptions 
of micro-processes, whereas creative emergence invokes previously undescribed 
interactions that come into play once aggregates form. 
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(feature-action mappings). What formally distinguishes different kinds 
of trainable machines, e.g. neural networks, genetic algorithms, 
Boltzmann machines, are the structures of the respective combination-
spaces being traversed, and the rules that direct the search processes. In 
the realm of scientific models, the observables of the experimental 
scientist correspond to the feature-primitives of trainable classifiers, 
while the formal computations that generate predictions from initial 
conditions correspond to decision rules.11 Once a set of measuring 
devices and their associated observables is specified, then different 
formal predictive algorithms can be generated and tested.12 

LIMITATIONS OF CLOSED SETS OF PRIMITIVES  

Combinatoric novelty is a dynamic, creative strategy insofar as it 
constantly brings into being new combinations of elements. However, 
such combinatoric realms are inherently limited by their fixed sets of 
primitive elements. Arguably, all that can happen within such universes 
are recombinations of existing, prespecified symbols – there is no 
means by which new primitive symbols can be created by simply 
recombining existing ones. One does not create new alphabetical letter 
types by stringing together more and more existing letters – the new 
notations must be introduced from outside the system by external 
agents. Likewise, in our computer simulations, we set up a space of 
variables and their possible states, but the simulation cannot add new 
variables and states simply by traversing the simulation-states that we 
have given it. This "closed-world" character of computational systems 
poses fundamental problems for purely symbolic approaches to 
artificial intelligence and artificial life. Various related arguments 
concerning problems of predictability, complexity, emergence, and 
closure in computer simulations have been summarized, discussed and 
debated in depth elsewhere.13 

                                                 
11 For discussions of the operational structure of scientific models (Hertzian commutation 
diagrams), see (Cassirer, 1955; Rosen, 1978; Rosen, 1985; Kampis, 1988; Cariani, 
1989b; Kampis, 1991b; Cariani, 1992a).  
12 The realm of combinatorial search is the formal, computational part of the process. 
Given a finite set of observables with discrete, distinguishable states, general systems 
theory outlines what formal models (what parameters and parameter-combinations) are 
possible. Of course, if adequate predictions cannot be obtained with a given the set of 
observables, then the scientist must go outside of the model to change its assumptions, by 
altering observables and/or formal relations. 
13 (Cariani, 1989a; Pattee, 1989; Kampis, 1991a; Cariani, 1992a; Emmeche, 1994; 
Bonabeau, Desalles and Grumbach, 1995; Bonabeau and Theraulaz, 1995; Steels, 1995; 
Clark, 1996) The more platonically-minded counter-arguments assert that computer 
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While computationalists in artificial intelligence and artificial life 
have correctly recognized the generative power of combinatoric 
novelty, they have generally failed to recognize the need for processes 
that create new primitives.14 The informational and economic power of 
the digital computer is constantly increasing by leaps and bounds, so it 
is entirely natural to look to more powerful machines and complex 
programs as generators of emergent functionality. Powerful techniques 
rapidly become totalizing world views that redefine the world in their 
image, and the digital computer is no exception. The dramatic 
appearance of formal theories of computation in the 1930’s swiftly 
followed by the development of digital electronic computers in 
subsequent decades effectively revived platonic ideas, eventually giving 
birth to universalist computationalist ideologies with broad 
annexationist aspirations.15   

                                                 
simulations can be made potentially-infinite in one way or another. Since little can be 
proven concerning what is possible or impossible in infinite systems (e.g. Godel’s 
Undecidability Theorems), one can make the argument that such systems might not be 
closed systems. However, indefinitely expanding systems are not physically realizable – 
once we invoke potential-infinities we are no longer in the realm of logics or computer 
simulations that can be actually implemented, but in the universe of platonic objects. 
There is a qualitative gap between the very-large-but -finite, and the potentially-infinite. 
Other break-out strategies are more incrementalist: adding logical depth, increasing 
string lengths, growing automata, creating meta-rules. I would argue that these moves 
only delay the problem, that while new combinatorial states are created this way, still no 
new primitive categories are added, hence the dimensionality of possibility-spaces does 
not increase. They are akin to adding new distinctions within existing observables 
(Figure 2, bottom panel). These maneuvers by themselves do not obviate the need for 
primitive-creation and dimensional increase. 
14 e.g. (Boden, 1990a; Boden, 1990b; Kauffman, 1993; Holland, 1998). It is invariably 
assumed that hill-climbing take places on hills that don’t change their shapes as 
populations climb them. In evolutionary landscapes, dimensional increase means that 
new factors come into play over time. The modes of interaction between organisms can 
depend on their perceptual capabilities, and these in turn shape the adaptive landscape. 
Percept and action repertoires shape “effective connectivities” between organisms. An 
adaptive landscape where pigments and color vision have evolved has a higher effective 
dimensionality than an otherwise similar world without color. This is related to Conrad’s 
notions of “bootstrapping the adaptive landscape”(Conrad, 1983) and 
“extradimensional bypass”(Chen and Conrad, 1994). 
15 Many of the tenets of the computationalist worldview coalesced at the 1956 Dartmouth 
workshop on computation at which the disciplines of cognitive science and artificial 
intelligence were born (McCorduck, 1972). From the mid-1950’s onward, 
computationalists argued that discrete digital computations could in principle simulate -- 
and presumably supplant -- any material process. This led to the burying of the analog-
digital and hardware-software distinctions, and occurred in parallel with the discarding 
of distinctions between analytic and empirical truths in philosophy (logic vs. 
observation, computation vs. measurement). In AI and later, in artificial life, neo-
Laplacian computational microdeterminisms could always be postulated as “physical” 
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It is imperative to keep the role of the formal – mathematics, logic, 
and formal computation – in perspective. While formal systems are 
effective, almost indispensable tools of thought and practice, this does 
not necessarily make them ideal universal prototypes for the structure 
of mind and matter. In focusing on the generative power of 
computational combinatorics, it is easy to overlook the critical, 
formative role of the human designer in setting up formal notations in 
the first place, and in expanding them when needed. A wise practitioner 
understands the capabilities and limitations of the tools that s/he uses; a 
practitioner with vision understands the dangers of limiting the 
imagination to one kind of tool. In the focus on recombination, the 
temptation is great to truncate conceptions of novelty, creativity, and 
emergence to pure recombination and evaluation. These notions then 
are defined in terms that exactly fit the capabilities of digital 
computers.16 This Procrustean approach to creativity chops off those 
capacities that distinguish human beings from digital computers: the 
ability to autonomously interact with the external, material world 
through sensing and acting, and in doing so, to formulate new 
conceptual primitives in an open-ended manner.17  

As entities in and of themselves, digital computers and formal 
systems are therefore bounded and closed, but in collaboration with 
human beings, they can greatly facilitate the formation of entirely novel 

                                                 
descriptions for any problem (see critiques by (Rosen, 1991; Rosen, 1994; Pattee, 1995)), 
despite the difficulties of ever testing these hypotheses experimentally. The early 
conceptual developments paved the way for hegemony of platonic, model-theoretic logic 
systems in the cognitive sciences that had little interest in how meaning might be 
embedded in real brains such that it could be formed through material interaction with 
the external world via perception and action. It goes to show that, for better or worse, 
every sufficiently powerful intellectual revolution inevitably produces its own peculiar 
“excesses.” The computer revolution is no exception. 
16 Reductions of creativity to discrete generative systems, e.g. (Boden 1990a; Boden 
1990b; Holland 1998), carry out such truncations, and in doing so, unecessarily narrow 
our vision. 
17 Questions of semantic closure of computational systems have been discussed elsewhere 
(Dreyfus, 1979; Carello et al., 1984; Cariani, 1989b; van de Vijver, 1991; Cariani, 
1992a). Rather than redefine creativity to accomodate what computers can do, as an 
alternative, we could rethink what kinds of artefacts are possible that might embody 
alternative notions of fundamental creativity. Rather than designing devices that operate 
on our prespecified categories, devices need to have their own means of adaptively 
altering their internal structure, independent of their designers. They must be capable of 
constructing their own categorical primitives, their own relevance criteria, in order to 
attain full epistemic autonomy (Cariani, 1992b; Cariani, 1992a; Cariani, 1993). The 
answer to the 'frame problem' (Dreyfus, 1979; Dreyfus and Dreyfus, 1987) is to give the 
devices the means to adaptively determine what is contextually-relevant, e.g. by 
constructing their own sensory linkages with the world. 
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ideas. Although computers are but externalized extensions of our minds, 
human-machine collaborations taken as a whole system can manifest 
creative emergent functionalities that cannot be seen in computers 
alone.   

EMERGENCE AS CREATION OF NEW PRIMITIVES 

Classically, “emergence” has concerned those processes that create 
new primitives, i.e. properties, behaviors, or functions that are not 
logical consequences of pre-existing ones.18 Primitive-creation is also 
an issue for combinatoric, analytic-deductive conceptions of 
emergence – one can always ask how the particular primitives of an 
existing combinatorial system came into being in the first place. 
Combinatoric-emergence assumes a "God's-eye view" of the objects 
that inhabit its universe, but questions of the origins of this universe lie 
outside its realm.19 Creative emergence, on the other hand, adopts the 
epistemic perspective of a limited, but expandable observer. Primitive 
objects in such a world almost always contain properties that are not be 
fully known to the observer. These hidden aspects can come into play as 
primitives interact through the underlying material processes that 
subserve them.  

In this latter view, creating a new primitive entails the formation of a 
new property or behavior that in some strong sense was not predictable 
(by the limited observer) from what came before. The most salient 
examples of this kind of emergence involve the biological evolution of 
new sensory capabilities. Where previously there may have been no 
means of distinguishing colors, odors, or sounds, eventually these 
sensory capacities evolve in biological lineages. From a set of primitive 
sensory distinctions, one can list all combinations of distinctions that 
can be made with those primitives, but there are always yet other 
possible distinctions that are not on the list. For example, we cannot 
combine information from our evolution-given senses (sight, hearing, 
smell, etc.) to detect gamma radiation. Creation of the ability to sense 
gamma rays, through biological evolution or artificial construction of 
measuring instruments, thus adds a new primitive to the set of 
perceptual distinctions that can be made. 

                                                 
18 In a very similar vein (Morgan, 1931) distinguished "emergents" from "resultants". 
Emergents are the result of novel creation, resultants, of novel combination. 
19 Questions concerning the ultimate origins of gods and numbers are usually avoided 
entirely by theologians and mathematicians. 
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Observables are the perceptual primitives of scientific models. If a 
given model fails to accurately predict the observed behavior of some 
material system, we may very well require additional observables to 
fully predict or explain its behavior. In this case we cannot arrive at new 
obervables simply by making computations on the states of existing 
ones; we must go out and construct a new kind of measuring instrument 
that will give us yet another independent window on the world. Each 
independent observable yields a different perspective that is not 
completely translatable into the states of other ones.20 Each 
independent observable represents a different category (e.g. 
mass,voltage, current, temperature, velocity, barometric pressure, 
humidity, tensile strength) and therefore must be given a separate unit-
dimension in a model. Models with disjoint sets of observables thus 
may not be reducible to each other because of different, 
incommensurable categories.  

Artificial devices that create their own perceptual primitives can be 
built. The best example – and perhaps the only one – is a 
electrochemical device that was constructed by the British 
cybernetician Gordon Pask in the late 1950’s.21 Its purpose was to show 
how a machine could evolve its own “relevance criteria.” Current was 
passed through an array of platinum electrodes immersed in a aqueous 
ferrous sulphate/sulphuric acid medium, such that iron filaments grew 
to form bridges between the electrodes. By rewarding structures whose 
conductivity covaried in some way with an environmental perturbation, 
structures could be adaptively steered to improve their sensitivity. 
Pask’s device acquired the ability to sense the presence of sound 
vibrations and then to distinguish between two different frequencies. In 
effect, the device had evolved an ear for itself, creating a set of sensory 
distinctions that it did not previously have. The artificial device 
automated, in a very rudimentary way, the creation of new sensory 
primitives, thereby providing an existence proof that creative 
emergence is possible in adaptive devices. 

OPERATIONALIZING DEFINITIONS OF EMERGENCE 

Practically, how does one distinguish combinatoric emergence from 
creative emergence? How do we know when a new primitive has been 
created? An operational definition is needed to make the concept 

                                                 
20 i.e. the observable is not commensurable with the others.  
21 (Pask, 1958; Pask, 1959; Pask, 1960; Pask, 1961; Cariani, 1993) 
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explicit.22 The theoretical biologist Robert Rosen has proposed a 
definition of emergence as the deviation of the behavior of a material 
system from the behavior predicted by a model of that system. (Figure 
2). Rosen’s formal definition can be operationalized. An observer 
watches the behavior of a material system over time, noting the 
sequences of observed-states that the material system traverses (Figure 
2, top). The observer begins to form expectations about what states the 
material system will subsequently pass through given that it is presently 
in some particular state. This set of expectations forms the observer's 
model of the material system.  

                                                 
22 An operational definition specifies, in a step-by-step manner, how one carries out a 
procedure. An operational definition clarifies conceptual distinctions by giving a method 
that others can use to unambiguously classify objects, events, or states-of-affairs. We 
understand the definition of something well only when we can provide an explicit method 
by which others can make the same observations and classifications that we do. 
Operational definitions avoid endless confusion over what is "emergent." and what is not. 
There is an unfortunate tendency in too many contemporary discussions to rely on 
intuitive understandings of "emergent computation", “life”, and “complexity’ without 
ever attempting to provide rigorous definitions.  
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Figure 2. Emergence-relative-to-a-model. Top: Coevolution of a device embedded in 
an external environment and an observer attempting to predict its behavior. Initially 
the observer can predict the behavior of the device, but as device changes its 
internal structure to evolve a new sensor, the device behaves unpredictably relative 
to the observer. Observer eventually recovers predictability only by adding an 
observable that covaries with the readings of the device's new sensor. Bottom: 
Possible routes by which the observer can modify a predictive model when observed 
behavior deviates from prior expectations. There are three possibilities: 1) Alterations 
of transitions between existing states, adding more states to existing observables, 
and adding new observables. 
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A full description of these expectations includes the measuring devices 
and experimental conditions that define the observable-states of the 
material system. Thus, the model tells us that if we look at the material 
system in a particular way, we should expect to see the specified state-
transition behavior. In effect the model of the system makes explicit the 
expectations of the observer, such that an emergent event takes place 
when those expectations are violated.23 

This system-theoretic definition of emergence ("emergence-relative-
to-a-model") can be operationalized and applied to various kinds of 
natural systems and artificial devices to determine whether a given 
material system has emergent behavior. An emergent event involves a 
structural change in the relationship between the observer and the 
physical system under observation. Like any other measurement,the 
detection of an emergent event is a joint property of both observer and 
system. If we are observing an adaptive device, we assume that we 
initially have an adequate model of the behavior of the device. Over time 
as the device adapts (learns from experience), its internal structure 
changes and consequently its behavior changes. As a consequence, if we 
are to continue to predict its behavior, we then must change our model 
in some way to "track" the internal changes in the device. Observer and 
device then evolve in parallel. The observer infers what is going on in 
the device from what changes the observer finds he or she must make in 
order to continue to account for the device's behavior.  

When the device's behavior deviates from the observer’s model, the 
observer has two complementary strategies for changing the model 
(Fig. 2, bottom). The observer can either modify the model’s predictive 
algorithm or s/he can change the observables used to measure the states 
of the device and its environment. If the device has merely changed its 
internal computational structure, but is still using the same set of 
operational, internal states as before, then modifications to the 
predictive algorithm will suffice to track the device. No observables 
need be changed or added. On the other hand, if the device suddenly 
grows a sensor that detects some new property of its environment (as in 
Pask’s device), then the observer must add a sensor (i.e. another 
observable whose readings are roughly congruent with those of the 
device’s emergent sensor) in order to track the device's behavior. 

                                                 
23 Outside of purely formal realms, operational definition requires a specification of the 
observational frame, since replicability of result across observers depends on the holding 
the observational context constant. Experimental scientists who deal with messy, ill-
defined real-world systems are familiar and comfortable with the necessity of interpreting 
observations taking into account the method by which they were made.  
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Intermediate between these scenarios is the case when the device 
refines an existing sensor to make finer discriminations of the same 
observable (e.g. refining a temperature sensor so that it can make 1 
degree disriminations rather than 5 degree ones). Here the observer 
similarly must refine the corresponding observable. 

These different "tracking" scenarios produce models with different 
dimensionalities. In the formal, computational part of the model we 
have one state variable for each independent observable, and the 
dimensionality of the "model space" ("phase space") represented is equal 
to the number of state variables. When we keep the same number of 
observables (new computation), the dimensionality of the model space 
stays constant. When we need to add another observable (new sensor), 
the dimensionality of the model space increases by one. In this case it 
can be said that the "effective dimensionality" of the device (relative to 
us) has increased as the device's internal structure evolves. We will 
assume that our initial observables in some sense capture the behavior 
of the primitives of the system being observed, and that this rough 
congruence is the reason that our model initially made successful 
predictions in the first place.  

Combinatoric emergence occurs when the behavior of the device 
changes but no new observables are needed to regain predictability. 
From this we infer that only recombination of primitives is occurring, 
since our own model needs no new observables or system variables to 
explain the behavior of the system. The old framework will do, albeit 
with some adjustments. Effective dimensionality is unchanged.  

Creative emergence occurs when new observables are required — 
and from this we infer that new primitives have been created. Effective 
dimensionality increases. Thus under a given set of observables (or 
observational frame or informational frame) we can unambiguously 
determine whether we are witnessing emergence-as-new-combination 
or emergence-as-de novo-creation. It should always be kept in mind, 
however, that this decision is relative to the observer's frame, so that it 
is in no sense an absolute distinction. In this framework, emergence lies 
in the changing relationship of the observer to the material system that 
is observed. 

DIMENSIONAL ANALYSIS OF SIGNALING NETWORKS 

The dimensionality of the descriptive notation needed to adequately 
capture the behavior of a system thus informs us of the structure of the 
space of possibilities. It tells us how many categorical primitives, how 
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many independent state-variables are in play at any given time. It tells us 
how many different properties or observables are needed to describe 
our system. In our notations, each kind of categorical primitive has its 
own dimensional label so that independent categories can be kept 
distinct. The formal mechanics of categorical primitives constitute 
“dimensional analysis.”24 Take any physics or chemistry problem and 
examine how the values of the different state-variables are manipulated. 
The different unit-dimensions function to enforce commensurability 
relations between the variables. One has to keep different "units of 
measurement" separate, and these unit-dimensions must accompany all 
(scalar) magnitudes as one proceeds through the computations. In 
physics, variables with units of mass, velocity, and time must all be 
combined only in particular ways. Adding magnitudes for mass and time 
is like adding apples and elephants – the resulting dimensions may not 
be meaningful. In the stochiometric equations that describe chemical 
equilibria, each chemical species has its own unit-category that 
accompanies its numeric concentration value (e.g. 100 nM-[Ca++]) . The 
unit-dimensions preserve the semantic coherence of the computations 
and in doing so improve both the syntactic and semantic reliability of 
the symbol manipulations.25 The same advantages hold for typed logics 
over untyped or "flat" ones: logical types guarantee coherent 
manipulation of sets of entities whose categories may or may not be 
commensurable.26  

What does dimensionality mean for a system as complex as the 
brain? For almost a century neuroscientists have analyzed electrical 
signals from the brain in hopes of understanding the underlying neural 
processes. Electroencephalographic (EEG) recordings, electrical 
potentials from the scalp of awake humans, reflect in a rough way the 

                                                 
24 (Bridgman, 1931) 
25 Combining magnitudes of different units willy-nilly can easily create syntactically-
correct, but semantically-incoherent computational results. At the end of a computation, 
if all unit-dimension relations have been preserved, one knows what the numerical result 
means by its accompanying unit-dimension. One can also detect a computational error if 
at the end one is left with unexpected or meaningless dimensions. Similar kinds of 
relations arise in computer software design. 
26 Any typed logic can be expressed in an untyped one, in the same way that, given 
enough states, any higher dimensional state-space can be mapped onto one-dimension. 
The cost of fewer dimensions lies in the complexity of book-keeping operations needed to 
keep mutually-exclusive states from occuring. All information, whatever its 
dimensionality, can be recoded into ever-longer strings of 1's and 0's. However, the 
greater the dimensional reductions, the more brittle encodings become, syntactically and 
semantically, in the face of minor bit-errors.  
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electrical activities of large populations of neurons.27 In early EEG 
studies, it was found that when the brain was at rest, in a relaxed state, 
there were relatively fewer periodicities present, with more large-scale 
synchronized behavior.28 When sensory stimuli were presented or when 
subjects were asked to carry out some mental task, more complex, less 
synchronized patterns were observed. Intuitively, one might conclude 
that the complexity of the EEG patterns reflects in some crude way the 
complexity of the underlying neural processing. In the last decade, 
some theorists have attempted to estimate this complexity in terms of 
“effective dimensionality”, i.e. the number of independent dimensions 
needed for a dynamical system model to account for the observed 
electrical behavior.29 This measure of the degrees of freedom available 
to the system is also called its “correlation dimension.” For example, 
the lowest correlation dimensions in EEGs are found for sleep states 
(roughly 4-6), with higher ones for awake, resting subjects with eyes 
closed (roughly 10) and still higher values when eyes are opened.30  

In many ways analyzing EEG signals is akin to trying to deduce the 
workings of a computer from sets of voltage readings taken on the 
outside case. The residual voltages that one sees have something to do 
with the processing that is taking place inside the machine, but the 
relationship may be only tangentially related to the signals that the 
system itself is using.31 Ideally, we want, whenever possible, to discuss 

                                                 
27 The EEG is produced by the summed electrical activity of large numbers of neurons 
and glial cells. As a result one sees only those temporal patterns in the response that are 
the result of widespread synchronization of discharges across a population or local 
ensemble, i.e. asynchronous temporal microstructure is averaged out. It is often far from 
clear what EEG patterns mean in terms of neural codes and representations (Cariani, 
1997a). 
28 (Walter, 1959b) 
29 (Gershenfeld, 1988; Basar, 1990; Rapp, 1994) 
30 (Graf and Elbert, 1989). While these methods are quite powerful in theory and concept, 
in practice the estimation process is frought with many methodological pitfalls and 
uncertainties (Rapp, 1993b; Rapp, 1993a), some involving the difficulties of 
distinguishing deterministic processes from stochastic ones.  
31 How are the correlation dimensions from EEG's related to the effective 
dimensionalities of neural coding spaces? It may be that only some of the processes that 
are modelled in the dynamical system have functional significance - some may be 
byproducts of particular structural parameters of the system, such as head size or pH, that 
play only an incidental role in perception and action. It would be as if we had a detailed 
physical model of DNA: would we recognize the “code” amidst the detailed interactions 
of its constituent atoms? At some point those aspects of the system that are functionally 
essential must be identified: one examines how well a human or animal performs a 
specified task, say discriminating pitches, and one looks for those aspects of neural 
activity that covary with the performance of the task. One then has a working hypothesis 
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the operation of the brain in terms of the neural codes that it uses rather 
than in terms of the more convoluted external signs of these processes. 
We want to describe the brain in terms of a signaling system and to 
discuss how new signals might be created in such a system. We are 
interested in processes that increase the effective dimensionality of our 
signal-space.32 

What determines the dimensionality of a signaling system? As in the 
physics or chemistry problem, a signaling network must also maintain 
coherent relations between the different kinds of information being 
processed in each operation. How the network accomplishes this is a 
matter of how the information (units, magnitudes) is encoded in the 
various signals that are sent within the network. Each distinct kind of 
information, each informational dimension, constitutes a distinct signal 
type. Within a given signal type, the particular form of the signal 
conveys the signal’s value. Thus every signal has two different aspects, 
its type and its value.  

As an illustrative example, consider a clothes dryer that contains both 
a temperature sensor that registers two different states (high, low) and a 
timer that registers two states (not done, done). The outputs of the 
temperature sensor and the timer are connected to the control module 
of the dryer by means of separate wires. Here the signal types are 
defined by their semantics, i.e. one conveys a temperature distinction 
and one conveys a time distinction, each by virtue of the kind of 
element that produced it. The form of each signal here is a voltage 
value, relative to ground, in each respective wire. The controller 
“knows” which signal represents temperature and which one represents 
time by the wire on which the signal is conveyed. This is known as a 
“labelled-line” coding scheme. But knowing the signal type without the 
signal value, or the signal value without the signal type is useless – one 
must know both. This means that there must exist two independent 
aspects of the signal that convey signal type and signal value. In this 
example, these two aspects are which-wire (type) and which-voltage 
(value), but obviously the same information could have been encoded 
and sent to the controller in a different way. For example, instead of 
separate wires, the temperature sensor and the timer could have been 

                                                 
concerning which aspects of neural activity subserve a particular function. In the case of 
the functional organization of the brain, we believe in some sense that the brain can be 
described in terms of informational, signaling processes, i.e. in terms of neural 
representations and their transformations. 
32 See (Pask, 1959; Pask, 1960; Pask, 1961; Carello et al, 1984; Chen and Conrad, 
1994) for other related approaches to this problem. 
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given radio transmitters with their own special frequencies with the 
amplitudes of their respective output waveforms encoding signal values. 
For each incoming signal the controller would need to somehow 
distinguish between the two frequencies in order to determine signal 
type and to measure the amount of power associated with that frequency 
to determine signal value. 

General, very basic aspects of signals can be used to encode signal 
type and signal value. Four such properties of a time-series signal are: 
1) the channel (or medium) through which it is conveyed (e.g. vibrations 
through air or electrical current through a particular wire), 2) the 
intrinsic form or pattern that constitutes the signal, independent of 
magnitude (e.g. a sine wave or a square wave or a particular spectral 
shape), 3) the time-of-arrival of a signal-event, such as its onset, and 4) 
properties related to its absolute magnitude, such as its mean or 
variance.  

Any of these aspects of signals can convey signal type and/or signal 
value. Often signal type is conveyed by a physical channel. One 
dedicates particular channels to particular kinds of information 
("labeled lines") so that the receiver can infer the kind of information 
arriving in a signal by where it came from (which input channel). An 
example of such a system is a telegraph network or a telephone 
switchboard, where each separate signal is conveyed over a separate 
wire.   

Alternately, one can encode signal-type in the intrinsic form of the 
signal itself. Examples of this are AM and FM radio, where the identity 
of each signal (the station that sent it) is conveyed by its carrier 
frequency. Here the average magnitude of the signal is largely irrelevant 
as long as the signal is detectable; what matters most is its frequency. 
Internet headers that route messages to their destinations similarly 
encode their own identity in their form – the path through which they 
arrive at the receiver is irrelevant to their interpretation. Encoding 
signal-type in the signal’s form means that many signals can share the 
same transmission medium (multiplexing), and this in turn means that 
signals are no longer bound to their own separate physical channels. It 
makes "broadcast" strategies of information transmission and 
processing possible.  

A third strategy is to use time-of-arrival to indicate signal identity. At 
one second after a reference time marker, the arriving signal may be a 
temperature reading, at two seconds, a humidity reading, and so on. This 
strategy is also used in contemporary telephone systems to 



20 Peter CARIANI 
 
concurrently transmit the waveforms of multiple phone calls over the 
same wire ("time-domain multiplexing").  

Lastly, properties related to the magnitude of a signal can be used to 
encode its type. A waveform with a particular mean voltage could 
encode one kind of signal, while the same waveform with a different 
mean could encode another. Mean voltage could encode signal type 
while variance could encode its value, or vice-versa. By far the most 
common signal-coding strategy pairs channel-coding of signal-type with 
magnitude-coding of signal value. 

The neural coding problem is the task of understanding which aspects 
of neural activity encode and convey specific kinds of information.33 
From the perspective of neural coding, the brain is regarded as an 
adaptive signaling network in which the form and organization of neural 
signals determine its informational capabilities. Most of the signals in 
the brain that subserve our perceptual, cognitive, and motor functions 
appear to be conveyed from neuron to neuron by trains of pulses (action 
potentials, discharges, spikes). These neural, pulse-coded signals share 
the same general properties with other kinds of time-series signals 
(Figure 3): 1) a channel through which they are conveyed, i.e. which 
neuron produced the spike train, 2) a time pattern or waveform that 
constitutes the internal form of the signal, i.e. time patterns of spikes in 
a spike train, 3) the time-of-arrival of signal-events, i.e. when particular 
spikes arrive in relation to some external event, their latency, and 4) 
their magnitude, i.e. the number of spikes, the discharge rate and/or the 
variability of that firing rate. 

 

 

                                                 
33 (Troland, 1929b; Boring, 1933; Boring, 1942; Mountcastle, 1967; Perkell and 
Bullock, 1968; Uttal, 1973; Cariani, 1995; Rieke et al., 1997) 
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Figure 3. Basic properties of signals in the context of spike trains. A time-series 
signal has fourcomplementary aspects: the channel through which it arrives (A, B, 
C), its internal form (interspikeinterval structure), when it arrives (latency), and its 
magnitude (spike rate). Spike trains A and B arrive through different channels at 
different times and have different spike rates, but share similar interspike intervals). 
Compared with trains A and B, train C arrives in a different channel and has a 
different temporal form, but has the same latency as B and the same spike rate as A. 
Sources A-C could be different receptors or neurons. Incoming channel, time pattern, 
arrival time and magnitude can all be used to convey to the receiver what kind of 
signal is being sent and what its value is. Which aspects of the signal convey signal 
type and signal state depend upon the interpretation implemented by the receiver (a 
neural ensemble or assembly). The interpretation depends upon the internal structure 
of the receiver (properties of elements and their effective connectivities inmagnitude 
and time). The receiver then produces output signals that themselves can be 
potentially organized by specific combinations of channels, time patterns, latencies, 
and magnitudes. 
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SIGNAL PRIMITIVES IN CONNECTIONIST SYSTEMS 

By far, most contemporary models of information-processing in the 
brain are connectionist models (Figure 4, top).34 These networks 
embody basic assumptions about neural coding in their functional 
organization. Each node in a connectionist network represents a single 
neuron. Contingent upon the neuron’s inputs, the neuron sends signals 
to other neurons. Different kinds of information are represented by 
particular nodes having specific connectivities to the rest of the 
network and to the outside world. In this interpretation, an auditory 
neuron conveys information about the acoustic environment by virtue of 
its specific connections to organs of hearing. It may respond best to 
only a particular range of frequencies or some particular property or 
"feature" of sounds, so that the average number of spikes that it 
produces within a given time window provides an indication of the 
presence or absence of those factors in the acoustic environment. Thus, 
in this representational system, particular channels convey signal type 
(what sound feature is represented) and a scalar quantity (average rate) 
conveys the signal state (e.g. relative presence or absence of the 
feature). Each node receives many signals from other nodes, weights 
them according to their particular signal type, sums them and thresholds 
the result to produce an output signal. The output signal is then sent, 
"fanned out", to other nodes in the network. Adaptation in the network 
takes place by modifying, via a learning rule, the weights associated with 
each input channel (signal type) according to past experience.  

These fundamental assumptions about neural representations mean 
that connectionist networks depend upon the specificity of connections 
between the elements to maintain the coherence of function. One can 
use a "telegraph" or "switchboard" metaphor to crudely describe the 
normal ways that we visualize the operation of these networks.35 The 
particular connections of the wires maintain the identities of the 
senders (signal types, which convey the semantics of the signals). If one 
scrambles the wirings, the coherence of the network is lost. The system 
must then be adaptively rewired through training. In their encoding of 
signals, connectionist networks are like the clothes dryer with its 
particular wirings; where they differ from most contemporary devices is 
in their ability to adaptively rearrange their internal wiring. 

                                                 
34 See (Churchland and Sejnowski, 1992), (Arbib, 1989), and (Feldman, 1990) for 
overviews. 
35 (John 1972) 
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Connectionist networks thus effectively reflect many of the standard 

operating assumptions of contemporary neuroscience. The framework 
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is associationist: complex ideas are built up from associations between 
primitive ideas or sensations. In its most basic form, rate-channel 
coding is assumed. Different sensations are encoded in different 
neurons that are connected to different sensory receptors, i.e. signal-
type is channel-coded. Different values of these sensations, such as 
intensity, are encoded in the discharge rates. Systematic changes in 
stimulus qualities, such as frequency or color are thought to be encoded 
in across-neuron profiles of neural discharge (which neurons are firing 
how much). In this system, the channels within which a given neural 
signal originates determine its signal type. For example, in this view a 
particular spike train encodes information about a particular frequency 
by virtue of its connectivity, however distant, to that “place” on the 
cochlea most sensitive to that frequency.36 Discharge rates of neurons 
with particular frequency tunings are then thought to encode the amount 
of stimulus energy in the corresponding best-frequency regions. Thus, 
in these rate-channel or rate-place schemes, at each stage of processing 
all signals are converted into a common neural currency, discharge rate. 
But it is the specific pattern of interconnections, that makes the 
network a coherent functional entity. Roughly put, if the brain is a 
connectionist system, the discharge rates of all its neurons together 
with their interconnectivities (connection weights) is sufficient to 
characterize its functional state. 

In connectionist networks, mechanisms for adaptive adjustment of 
connection weights ensure functional stability over time. These are also 
mechanisms by which new combinations of connections can be realized. 
Given liberal constraints on how many nodes and connections are 
available and what interconnections are possible, an astronomical 
number of possible configurations can be accessed. Emergent-
connectivity is thus one way that the generativity of brains can 
potentially be explained. The mechanisms that subserve this 
combinatorial richness are generally consistent with a body of 
neurophysiological and neurological evidence that shows the growth and 
modification of connections during development, learning, and recovery 
from injury.37 In this perspective, conceptual novelty arises purely 
                                                 
36 For discussions of “place” vs. temporal theories of hearing, see (Troland, 1929a; 
Boring, 1933; Boring, 1942; Wever, 1949; Evans, 1978). Very similar issues apply for 
spatial vision and somatoception. 
37 There are other ways that novelty could potentially be generated in a connectionist 
network, some being more physiologically plausible than others. New elements could be 
added to the system, in effect, creating a growing automaton whose state space expands; 
this would be a clear example of the emergence of new primitives. Alternately, if we were 
not restricted to axonal transmission of information via discrete spiking events, then it 
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through new combinations of connectivities between pre-existing neural 
elements, almost excluding out of hand the possibility of creating new 
kinds of neural signals. 

Connectionism, however, is a broad and flexible umbrella that 
encompasses a very wide range of neural network approaches. 
Dynamical systems theory is a particularly fertile approach to 
conceptualizing neural networks, one that lends itself to many 
alternative interpretations.38 If the discreteness of the states and the 
state-determined (rule-governed) nature of the system is emphasized, 
then such systems resemble discrete, logic-based mechanisms, albeit 
more distributed and microscopic ones. If, on the other hand, the 
similarity between alternative neighboring states and trajectories is 
emphasized, then the dynamical system is seen as a close approximation 
to a continuous, analog, law-like physical process. In these descriptions 
one can either see the reductionist world, where macroscopic patterns 
emerge from deterministic microscopic computations (macro-order 
from micro-rules), or the formation of discrete attractor basins and 
rule-like transitions between them from "continuous" dynamics. The 
difference lies in how the micro-states are interpreted: as surrogates 
for micro-computations or as approximations to continuous process. 
Dynamical systems thus can serve either as adjuncts to computationalist 
world views or as images of material processes.39 The ways in which 
such systems are seen to exhibit emergent behaviors, e.g. combinations 
of microcomputations vs. creation of new discrete attractor-based 
primitives from continuous dynamics, depends upon the relative 
success or failure of reductionist explanations: how far the global 
dynamics can be decomposed into interactions of independent parts.40 

                                                 
would be possible to conceive of new channels that utilize entirely different media (e.g. 
neuromodulators, hormonal diffusion, ionic and/or chemically-mediated action through 
glial cells, volume conduction (Köhler, 1951; Pellionisz, 1991), spike shape and/or 
amplitude, even changes in cell ultrastructure), to convey messages, and such events 
would also constitute the emergence of alternative pathways that would create new 
modes of (analog) signaling, thereby increasing the effective dimensionality of the system. 
This is not dissimilar to molecular strategies for "extradimensional bypass" that have 
been proposed (Chen and Conrad, 1994). Widespread use these alternate signaling 
modes to convey specific information (rather than to modulate some other processing) 
appears unlikely, but since relatively little attention has been paid to them, it is hard to 
completely rule out any functional, informational role for them. 
38 (van de Vijver, 1991; van Gelder and Port, 1995; Horgan and Tienson, 1996) 
39 See also Rosen’s discussions of computation in terms of dynamical systems theory 
(Rosen, 1986; Rosen, 1987). 
40 See cited works by Rosen, Kampis, and van de Vijver. 
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Functional emergence in connectionism thus depends on the 
observer's perspective.41 We can first adopt the perspective that the 
space of possible connectivities is given by the number of pre-existing 
elements, such that the system is operating within an exceedingly large, 
but closed space of possibilities. For example, all classifiers are bound 
by their feature spaces and the set of parameter combinations that 
implement their decision rule. Seen this way, connectionist systems 
exhibit emergence by recombination. On the other hand, instead of 
looking at the parameter space, we can instead observe the functional 
space of a classifier, i.e. the number of equivalence classes that are 
distinguished by a classifier. If there is parallel, redundant structure in 
the underlying parameter space of the classifier, then training can 
increase the number of classes that are distinguished, thereby increasing 
the effective dimensionality of the system. A classifer network wi th 
many elements might start out in a configuration that distinguishes 20 
classes, a number far lower than its capacity. During training, parameter 
alterations permit the classifier to distinguish 50 classes by reducing 
the degree of redundancy. Such a system in effect increases the number 
of global functional states that it has available, so that on a macroscopic 
scale such a system appears to be adding new states and new 
observables.42 In the first interpretation, the exhaustive micro-
description of the system in terms of all feature — and parameter-states 
produces combinatoric emergence. In the second interpretation, from 
the functionally-oriented perspective of the limited observer, new 
primitives appear to arise. The two perspectives are complementary; 
they do not contradict each other outright because they are based on 
different sets of observables, but being based on different sets of 
observables, both perspectives cannot be seen at the same time. 

SIGNAL PRIMITIVES IN TEMPORALLY-CODED SYSTEMS  

The prevailing neural coding assumption in neuroscience is that 
average rates of neural discharges, not their temporal patterns, convey 
information.43 Some of the consequences of these assumptions for 
connectionist networks have been outlined above. However, if precise 
timings of spikes are used in the nervous system to convey information, 
then there are a variety of alternative ways that neural networks can be 
built. Like our clothes dryer, it is possible that point-to-point wiring can 

                                                 
41 (van de Vijver, 1991; Kolen and Pollack, 1995; van Gelder and Port, 1995). 
42 e.g. as in a self-organizing Kohonen map (Kohonen, 1988). 
43 e.g. Barlow's Neuron Doctrine (Barlow, 1972; Feldman, 1990; Barlow, 1995). 
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be replaced by a more flexible coding scheme. There do exist many 
neurophysiological and psychophysical examples that point to time-
codes in the brain.44 Many of these examples are particularly striking.45 
At present the body of evidence, while considerable and very suggestive, 
is not yet extensive enough to be anything more than a tentative general 
hypothesis for temporal coding of sensory information. Consequently, 
the broader functional implications of temporal codes remain largely 
unexplored. We will discuss some of these implications for neural 
processing architectures – time-delay networks and timing nets – and 
what signal-creation would mean in such information processing 
systems. 

The simplest temporal pattern code is an interspike interval code, 
where times between spikes convey sensory information or motor 
commands.46 To the extent that voltages produced by sensory receptors 
follow stimulus time patterns, then spike trains of subsequent sensory 
neurons in the pathway will reflect the time pattern of the stimulus 
waveform. The resulting neural temporal discharge patterns then form 
an analog, iconic image of the stimulus, albeit in the medium of neural 
discharges rather than in the physical medium of the stimulus.47 Rather 
than converting all information into channel-coded features, the brain 
might instead make use of these time patterns to represent and analyze 
the stimulus. In the early evolution of theories of sensory coding, 
Rutherford's temporal "telephone theory" of hearing embodied this 
strategy, in opposition to Helmholtz’s channel-based "place principle."48 
In a temporal theory, the stimulus impresses its own iconic, 
spatiotemporal form on the neural representation, while in a channel-
coded “place” theory, neural representations take their form from sets 
of spatially-distributed channels that are provided by sensory organs, 

                                                 
44 (Bullock, 1967; Mountcastle, 1967; Perkell and Bullock, 1968; Uttal, 1973; 
Wasserman, 1992; Cariani, 1995; Cariani, 1997c). 
45 (Reichardt, 1961; Young, 1977; Covey, 1980; Emmers, 1981; Bialek et al., 1991; 
Langner, 1992; Carr, 1993; Di Lorenzo and Hecht, 1993; Mountcastle, 1993; 
Heiligenberg, 1994; Cariani and Delgutte, 1996; Lestienne, 1996; Simmons, 1996) 
46 The interspike interval is the joint property of two arrival times, and as such it is 
inherently a relational entity rather than an absolute event-in-itself. Correlation-based 
representations are constructed from these relational atoms rather from registrations of 
absolute, relation-less pixel-like perceptual atoms. 
47 It should be noted that while the spikes that make up an interspike interval are 
discrete events, the interval itself can vary in a continuous manner. Thus interspike 
interval codes are analog codes. This makes them suitable for conveying a continuous 
range of possible values. 
48 (Boring, 1942).  
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e.g. spatial positions within retinal, somatosensory or cochlear 
surfaces. 

Temporal pattern and sensory channel can potentially interact in 
various ways to codetermine sensory quality. For example, if most 
incoming spike trains have many 10 millisecond (ms) intervals between 
spikes, neural central processors may infer a source in the environment 
that is producing a 100 Hz periodicity. This might be interpreted as a 
100 Hz mechanical vibration of the skin if the pattern arrives through 
somatosensory channels or a 100 Hz pitch if it arrives through auditory 
ones. Whether the stimulus is a sound or a mechanical vibration, 100 Hz 
can be distinguished from 120 Hz by differences in the interspike 
intervals that are produced, i.e. by comparing the relative numbers of 10 
ms vs. 8.25 ms intervals.49 Here stimulus frequency is encoded by 
temporal-pattern and stimulus modality is encoded by channel. 
Alternatively, if each sensory pathway adds its own characteristic delays 
and/or additional time patterns50, then a central processor could 
differentiate different types of information solely on the basis of 
incoming time patterns, so that both frequency and modality could be 
temporally-coded in a manner that depended on incoming transmission 
channels. One of the differences between channel-coding of signal-
types and temporal-coding of signal-types is that in the former, the set 
of types is given by the channels themselves (which presumably are 
already created) while in the latter the stimulus impresses its time 
pattern on the neural responses and effectively creates signal-types in 
its image. If the underlying temporal dynamics are rich enough, then 
new time patterns and hence signal-types can be created through the 
interaction of time patterns. 

In the context of the neural coding problem, pitch is a useful 
phenomenon to examine because a great deal is known about both its 
psychophysics and at least some of the neural representations that may 

                                                 
49 Periodic stimuli impress their time structure upon neurons at many stations in the 
ascending sensory pathways of the auditory and somatosensory systems. The result is that 
many interspike intervals that correspond to stimulus periodicities are found in both 
systems (Wever, 1949; Kiang et al., 1965; Rose et al., 1967; Mountcastle et al., 1969; 
Evans, 1978; Langner, 1983; Langner, 1985; Morley et al., 1990; Langner, 1992; 
Mountcastle, 1993; Cariani and Delgutte, 1996; Cariani, 1997b; Cariani, 1997c). 
50 (Emmers, 1981) found modality-specific latency and interval patterns for the coding of 
somatosensory qualities in single units at the level of the thalamus. Stimulus qualities 
such as these are almost certainly encoded in the discharge patterns of large ensembles of 
sensory neurons. The population-discharge pattern evoked by a 100 Hz mechanical 
vibration on the skin will share some characteristics with that evoked by a 100 Hz tone 
(many 10 msec intervals), but differ in other respects (how many neurons are activated). 
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subserve it. We have investigated the neurophysiology of the pitches 
produced by complex tones (i.e. musical pitch) at the earliest stages of 
auditory processing, at the level of the auditory nerve and the cochlear 
nucleus. At these auditory stations there appear to be precise, robust, 
and pervasive correspondences between interspike interval distributions 
and the complex patterns of pitches that are heard by human listeners 
for particular stimuli.51 “Population interval distributions” are the 
interspike interval distributions that exist over a whole population of 
auditory neurons (e.g. over the 30,000 nerve fibers that make up the 
auditory nerve). Acoustic stimuli are presented to an anesthetized 
animal and the trains of spikes that are evoked by the stimulus in many 
single auditory neurons are recorded one by one. From the responses of 
50-100 neurons to 100 presentations of the stimulus, very good 
estimates can be made of the population interval distribution. With very 
few exceptions, at the level of the auditory nerve, the pitch that is heard 
corresponds to the interspike intervals that are most prevalent across 
the population. The population interval distributions for two different 
stimuli that produce the same 160 Hz pitch are shown in Figure 5, 
where the major interval peaks lie at the pitch period (6.25 ms) and its 
multiples. On a deeper level, the shapes of population interval 
distributions bear close resemblances to the autocorrelation functions 
of the stimuli that produce them.52 Because the autocorrelation function 
contains the same information about the stimulus as its power spectrum, 
population interval statistics potentially can encode auditory qualities 
related to spectral shape (e.g. timbre, vowel quality, other phonetic 
contrasts, musical intervals) as well as pitch. Unlike power spectra, 
however, autocorrelation preserves underlying temporal relationships 
between stimulus components.53 

 

                                                 
51 (Evans, 1978; Langner, 1985; Meddis and Hewitt, 1991; Cariani and Delgutte, 1996; 
Cariani, 1997b) 
52 (Cariani, 1997b) 
53 For example, the pitches of complex sounds are more readily seen in autocorrelation 
functions than power spectra. 
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Figure 5. Emergence of a new pitch percept. Top: Three pure tones, 480, 640 and 800 
Hz (left) sounded individually produce pitches at their respective frequencies. When 
they are are sounded together (middle), they produce a new, lower pitch at their 
common fundamental frequency, 160Hz. This pitch is the same as would be produced 
by a 160 Hz pure tone (lower waveform). At rightare interspike interval distributions 
compiled from the recorded neural responses of 50-100 catauditory nerve fibers to 
these stimuli. The major peaks in both all-order interval distributions correspond to 
the common pitch, at 160 Hz, that would be heard. See (Cariani & Delgutte, 1996) for 
detailed description of methods. 

 

The pitch of complex tones is a prime example of an emergent 
percept.54 For example, when single pure tones are played we hear 
pitches associated with each pure tone. If many harmonics of a 100 Hz 
pure tone (e.g. sinusoids with frequencies of 500, 600, 700, 800, 900, 
and 1000 Hz) are sounded together, we hear a “low” pitch at their 
common fundamental frequency (F0 = 100 Hz). The fundamental 
frequency is the largest common denominator of the frequencies. We 
clearly hear this low pitch at the fundamental even if none of the pure 
tones we played were themselves at the fundamental (i.e. we hear the 
"missing fundamental"). Further, all of the individual tones may be fused 
together to such a degree that it may even be difficult for us to hear 
them as separate entities. Whether one thinks of this perceptual 
phenomenon in terms of a top-down pattern-completion process, or in 
terms of bottom-up interactions between underlying neural 

                                                 
54 (Morgan, 1931) cites a related example of musical chords (p.4). He says "Such 
emergence of the new is now widely accepted where life and mind are concerned. It is 
untiringly advocated by Professor Bergson. Wundt pressed its acceptance under his 
'principle of creative resultants' (i.e. what we distinguish as emergents) which, he says, 
'attempts to state the fact that in all psychical combinations the product is not a mere sum 
of the separate elements...but that it represents a new creation." 
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representations of the pure tones, the outcome is an emergent Gestalt 
that is the result of the whole stimulus.  

What neurophysiological processes might underlie the creation of 
this new, low pitch? When each pure tone of frequency f is played 
alone, it produces many interspike intervals whose duration matches its 
period (1/f) and its integer multiples (n/f). When all of the intervals 
associated with all of the individual tones are combined, as they are 
when the tones are sounded together, the result is that the longer 
intervals common to all of the individual tones are most numerous. 
These will be intervals at the fundamental period (1/F0), the period that 
is an integer multiple of each of the periods of the individual pure tones 
(the harmonics). The resultant global interval pattern, with its major 
peak at the fundamental, then most resembles the interval pattern that is 
produced by a pure tone at the fundamental frequency. Thus, if the 
nervous system used such a population-interval representation for pitch, 
then one would expect the pitch of the pure tone at F0 and the low pitch 
of the harmonic complex to be similar. Such representations would 
account for the appearance of such low pitches when multiple 
harmonically-related pure tones were sounded together.  

We can translate this into signal-types and signal-values. On the level 
of signal-types corresponding to each pure tone component, it appears 
(perceptually and neurally) that a new signal-type has been created — 
there is a global time pattern that is related to, but different from its 
constituents. This emergence can occur because the representation of 
each pure tone component has a microstructure (subharmonics) that is 
not included when we describe the situation in terms of signal A + 
signal B + signal C. A property that is not included in the original 
description thus comes into play to create an new emergent property. 
On the other hand, we would not see this as emergent if we took the 
whole underlying sinusoidal pattern of each pure tone as primitive — 
the summation of these patterns would be seen as predictable 
combinations of these primitives.  

In effect, because the discharges of auditory nerve fibers follow the 
temporal pattern of the stimulus waveform, the neural interspike 
interval representation of the stimulus mirrors its time structure. If 
there were a central auditory processor that analyzed which intervals are 
most prominant in the discharges of populations of auditory neurons, 
then its actions could account for the pitches that we hear. The 
existence of such timing information and of a central processor capable 
of handling it would provide a straightforward explanation for many 
complex pitch phenomena. Since interspike intervals themselves 
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preserve temporal relationships and retain the inherent harmonic 
structure that is present in the stimulus, they might also explain the 
strong role that harmonic relationships play in hearing. If this is how the 
auditory system represents sounds, then the perception of harmonic 
relationships is an innate perceptual facility that is given by the basic 
neural codes that the system uses, rather than an acquired perceptual 
capability that is built up solely through experienced associations.  

A comprehensive account of pitch and the creation of new pitches 
that is based on temporal pattern codes thus exists at the level of the 
auditory nerve. It appears likely that such population-based interspike 
interval representations parallel pitch percepts at least up to the level of 
the midbrain. Many puzzles remain, however. As one ascends further up 
the auditory pathway, each neuron discharges fewer and fewer spikes for 
each stimulus presentation, so that fine timing information 
(periodicities above 200 Hz) becomes more difficult to detect. While a 
good deal of timing information is still present at the level of the 
auditory thalamus,55 exactly how much is available for cortical 
processing remains a critical question. 

TEMPORAL PROCESSING NETWORKS  

Purely connectionist networks operate on channel-coded inputs. 
Although the properties of connectionist networks have been widely 
explored, comparatively little work has been done on temporal 
processing networks, which operate on temporally-coded inputs. 
Temporal processing networks can be divided into time-delay networks 
and timing networks (Figure 4). Time-delay networks convert incoming 
time patterns to spatialized, channel-coded output patterns, while timing 
nets convert incoming time patterns to temporal output patterns. 

Most temporal processing schemes in neural nets have concerned 
time-delay neural networks, where not only neural connection weights 
but also time delays between elements are represented. The neural 
analogs of connection weights are synaptic efficacies, while those of 
time delays are dendritic and axonal conduction times and various 
membrane and cytoplasmic recovery times for neurons to rebound from 
past events.  

Some of the earliest proposals for how neural networks could 
account for human perceptual abilities, such as the Jeffress model for 

                                                 
55 (de Ribaupierre, 1997) 
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sound localization and the Licklider model for pitch perception56, were 
auditory time-delay networks. The Jeffress model was a simple time-
delay network that used time-structured inputs, tapped delay lines, and 
sets of coincidence detectors to carry out binaural cross-correlations to 
localize sources on the basis of interaural time-of-arrival differences. 
Over the last half-century, the corresponding neuroanatomical 
structures and neural response properties in the auditory brainstem that 
subserve the cross-correlation analysis have been identified and 
characterized.57 For the analysis of auditory forms, Licklider’s duplex 
model proposed time-delay networks that carried out temporal 
autocorrelation operations in order to compute the pitch of pure and 
complex tones.58 In a time-delay network, one can either change 
connection weights to alter patterns of time delay or change time delays 
(conduction velocities) to modify effective connectivity. Both 
mechanisms have been suggested as means for making such networks 
adaptive.59 More recently, following the resurgence of interest in neural 
networks in the last decade, more abstract, general purpose time-delay 
network architectures have been proposed.60 

Time delay networks are usually utilized to effect time-to-place 
transformations, wherein time-structured inputs are converted to spatial 
patterns of activation. The outputs of such networks are then analyzed by 
conventional connectionist networks. Corresponding physiological 
models for pitch processing posit time-to-place transformations at the 
level of the auditory midbrain, in populations of neurons tuned to 
particular periodicities.61 It remains to be seen whether these 
conversion strategies really work, whether they can account for the 
robustness and precision of the pitch percept.62 Once the time-to-place 

                                                 
56 (Jeffress, 1948; Licklider, 1951; Licklider, 1956; Licklider, 1959) 
57 (Casseday and Covey, 1995) 
58 (Licklider, 1951; Licklider, 1956). Subsequent temporal processing models for the 
binaural fusion of sounds ("auditory scene analysis") combined auto-correlation and 
cross-correlation mechanisms (Licklider, 1959; Cherry, 1961). Mechanisms along these 
lines that incorporate inhibitory inputs seen in brainstem physiology have been proposed 
for processing of sound duration cues in bats (Casseday and Covey, 1995). 
59 Licklider’s 1959 triplex model proposed a self-organizing neural network in which 
particular time and frequency patterns could be recognized by adaptively altering 
interconnectivities. (MacKay, 1962) proposed timing nets in which conduction velocities 
could be adaptively controlled. 
60 (Tank and Hopfield, 1987; Chappelier and Grumbach, 1994). 
61 (Langner, 1992). 
62 Major problems arise when one looks closely at how the putative periodicity-detectors 
actually behave. Their tuning is coarse, while pitch discrimination is much more precise; 
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conversions are effected, then standard, non-temporal neural networks 
perform an analysis of which periodicity channels were activated. By 
converting all time-structure into the common currency of spatial 
patterns of activation, such a theory preserves the fundamental 
assumption that the cerebral cortex is purely a spatial pattern analyzer. 

On the other hand, there is no inherent reason why cortical structures 
with their many layered surfaces and slow horizontal-fiber systems 
cannot be viewed as time-delay neural networks that are capable of both 
analyzing and generating arbitrary spatiotemporal patterns.63 This 
conception of the cortex is consistent with a functional role for cortical 
pyramidal cells as coincidence detectors rather than rate integrators.64 
When neurons have short integration windows (e.g. a few milliseconds 
or less), they operate as coincidence detectors in which relative timings 
of incoming spikes become more important in determining the neuron’s 
discharge pattern than average rates of incoming spikes or synaptic 
efficacies. As integration windows span longer durations, coordinated 
timing of inputs becomes much less critical, while sheer numbers of 
incoming spikes and their respective synaptic efficacies become more 
important.  

Ranges of temporal integration thus form a continuum of possible 
neural networks: from purely connectionist networks to time-delay 
networks to timing networks (Figure 4). For purely connectionist 
networks, spatial patterns of inputs are critical and fine timing is 
irrelevant. For time-delay networks, both spatial pattern and timing 
codetermine behavior. For timing nets, coherence of timing is relatively 
                                                 
their selectivity degrades at higher levels, whereas pitch frequency and pitch strength is 
remarkably stable at such levels. Further, the range of best periodicity-tunings becomes 
lower and lower in frequency as one proceeds to higher auditory stations. By the time the 
auditory cortex is reached, most units have best-periodicities below 20 Hz. There is 
something wrong with this basic picture. There is currently no remotely adequate 
physiologically-grounded account, temporal or place-based, of how the pitches of 
complex tones are represented at the level of the auditory cortex.  
63 (Braitenberg, 1961; Braitenberg, 1967; Abeles, 1982a; Abeles, 1990; Braitenberg, 
Heck and Sultan, in press). Often it is argued that the conductions are not slow enough to 
achieve longer delays on the order of tens or hundreds of milliseconds. But these cortical 
structures are all connected to each other and to other subcortical structures by means of 
recurrent pathways that create multisynaptic loops limited only by time-jitter. The number 
of multisynaptic return paths of a given duration increases combinatorically with the 
number of nodes. It is an open theoretical question whether reverberating time patterns 
can be maintained in randomly-connected timing networks given some rules governing 
fan-in, fan-out, temporal integration windows, and thresholds or whether connection-
rules can be specified so as to arrive at timing networks that propagate temporal 
structure with minimal degradation rates. 
64 (Abeles, 1982b; Softky and Koch, 1993) 
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more important than spatial pattern. Where we place specific neural 
structures along this continuum depends both on how much relevant 
information is temporally encoded in their inputs and to what extent, 
given the temporal integration windows of their elements, these neural 
architectures can make effective use of the timing information that is 
present. 

Thus far discussions of timing issues within the neurosciences have 
mainly been confined to problems of perceptual organization: how the 
brain coherently organizes the many elements of a perceptual scene into 
multiple discrete objects. Almost a century ago, the Gestaltists brought 
these problems of perceptual organization to the forefront of perceptual 
psychology. A well known metaphor, the “cocktail party effect,” begs 
the question of how we manage to follow a single conversation amidst 
the background din of many other conversations.65 Nowadays these 
concerns fall under the rubric of “scene analysis.”66 

Perceptual scenes are thought to be segmented, through bottom-up 
similarities between local perceptual features (e.g. common motion, 
texture, color, rhythm, voice pitch) and/or via top-down perceptual and 
cognitive expectations. Channel-coded local features within segments 
are thought to be bound together to form distinguishable stable objects. 
A fundamental difficulty for these representational strategies is that 
information from a given (cochleotopic or retinotopic) channel may 
participate in multiple objects. How does a central processor determine 
which channels go with which object when? In their critiques of the 
local features of associationist psychology, the Gestaltists provided 
many demonstrations of perceptual effects that depended on global 
relations rather than local features.67 

In the last decade many of these questions have been revived within the 
context of feature-based theories of visual processing.68 In accord with 
current coding assumptions in vision, local features are place-coded, 
with common timing providing a mechanism by which related local 
features can be grouped together. In this view, the representations of 
multiple objects are spread out over the same sets of neurons, so that 
the information linked with these objects is effectively multiplexed on 
the same processing and transmission lines.  
                                                 
65 (Cherry, 1961; von der Malsburg and Schneider, 1986; von der Malsberg, 1995). 
66 e.g.(Bregman, 1990) 
67 (Wertheimer, 1923; Uttal, 1975; Uttal, 1988). In audition, pitch, melody, and rhythm 
were Gestaltist examples for the primacy of global relations over local features. 
68 (Eckhorn and Reitboeck, 1990; Singer, 1990; Eckhorn, 1991; Singer, 1995) 
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Figure 6. Signal multiplexing: concurrent transmission of multiple signals over the 
same channels. A.Time-division multiplexing allocates particular time-slots to each 
signal (A-E). B. Time-division multiplexing models in the brain assume that different 
objects are represented by channel-activation patterns that are grouped according to 
common phase within an oscillation (scanning) or by temporal proximity 
(synchrony). C. Code-division multiplexing encodes signal-type in the form of the 
signal,using special header sequences that direct asynchronous and nonsequential 
transmission and reconstruction of the signal by each receiver. D. Code-division 
multiplexing can be implemented using asynchronous, temporal pattern codes if 
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different kinds of information (e.g. encoding different sensory qualities) have 
characteristically different forms, and if neural assemblies respond to particular 
complex temporal patterns (underbars). Broadcast is possible, because patterns are 
no longer channel-based. 

This is a strategy, called “time-division multiplexing,” is used in some 
telecommunications systems (Figure 6). In the neuroscientific 
discussion, there are two basic types of time-division multiplexing 
models: those based on interneural synchronies (perceptual properties 
associated with those elements that fire together bind together) and 
those based in intrinsic neural periodicities such as the "alpha rhythm" 
(properties associated with elements firing within a particular phase of a 
scanning period bind together).69 Considerable neurophysiological 
evidence exists for both interneural synchronies and neural oscillations, 
although there are many unanswered questions and a great deal of debate 
over the functional roles that these neural processes play.70 One 
potential difficulty with time-division multiplexing is that many 
different kinds of stimuli, such as trains of light flashes, acoustic clicks, 
or electrical shocks can drive large parts of the brain in arbitrary 
rhythmic patterns, yet in general our perceptions are relatively 
undisturbed by such interventions. Similarly, the timing of particular 
parts of the stimulus can be manipulated, presumably, to desynchronize 
parts of the response, generally without disrupting perception.71  

All of these considerations argue in favor of asynchronous neural 
representational mechanisms that cannot be disrupted by small shifts in 
time-of-arrival of signals. This has always been taken as one of the 
major strengths of average rate codes, that a great deal of temporal 
imprecision can be accommodated without disrupting the coherence of 
neural representations. Unfortunately, it has also been commonly 
assumed that all temporal codes must be synchronous ones, either 
rigidly locked to the time-course of the stimulus or to the discharges of 

                                                 
69 Scanning models were first proposed by [Pitts, 1965 #1023] (McCulloch, 1951) and 
(Walter, 1953; Walter, 1959b; Walter, 1959a). More recent versions have been proposed 
by (Llinas and Pare, 1996). 
70 See discussions in (John, 1967b; John et al., 1973; Thatcher and John, 1977; John 
and Schwartz, 1978; Cariani, 1997a) 
71 Many of these general counterarguments to scanning mechanisms were raised at the 
Hixon Symposium in response to (McCulloch, 1951). There is currently a great deal of 
healthy skepticism about all of the mechanisms for segmentation and binding that have 
been proposed. On the other hand, there are a number of striking and odd perceptual and 
cognitive effects that were reported by (Walter, 1959b) when specific time patterns of 
stimulation were presented and/or triggered by endogenous brain rhythms. A cottage 
industry that produces brain stimulation devices exploits these effects (Hutchinson, 
1991). 
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other neurons in a population. Conflation of temporal coding with 
synchrony sets up a false dichotomy between asynchronous rate- and 
channel-based codes on one hand, and synchronous time codes on the 
other. But a third possibility exists, that of asynchronous time codes. In 
such codes, multidimensional signals can be represented and conveyed 
in the statistics of time patterns that are propagated asynchronously 
through neural populations.72 The population-interval representations 
for pitch that were described above would be examples of such 
asynchronous codes. A particular message is encoded via an interspike 
interval distribution or through the distributions of more complex time 
patterns. Multiple time patterns can be sent on the same lines, 
interspersed or interleaved with other patterns. If the time patterns are 
sparse enough in time, representations based on them are effectively 
"transparent" with respect to each other.73 Here precise synchrony 
across transmission lines is not necessarily required; receivers are 
assumed to have rich sets of relative delays that allow them to integrate 
similar time patterns arriving at slightly different times.  

There is some neurophysiological evidence that supports the 
possibility of such asynchronous temporal pattern codes, where precise 
spike time patterns have been found mixed in with other spike 

                                                 
72 Other examples of interval-based multiplexing and possible processing mechanismsfor 
decoding multiplexed time patterns are (Chung, Raymond and Lettvin, 1970; Raymond 
and Lettvin, 1978; Waxman, 1978; Pratt, 1990; Wasserman, 1992). Optican, 
Gawne,Richmond and coworkers have proposed multidimensional temporal codes for the 
representation of visual forms (Richmond et al., 1987a; Richmond et al., 1987b; 
Richmond, Optican and Gawne, 1989; Richmond and Gawne, 1998). The group has a 
deep appreciation of the importance of code-dimensionality and present many strong 
information-theoretic and functional arguments for the necessity of multiplexing visual 
information. However, their temporal codes are variations in discharge rates over tens or 
hundreds of milliseconds rather than the more precise stimulus-driven spike arrival times 
that are suggested by the visual system of the fly (Reichardt, 1961; Reichardt and Poggio, 
1976; Bialek et al, 1991) or cortical encoding of acoustic transients (Phillips, 1989), 
where sub-millisecond precisions are found.  
73 Because the time patterns associated with multiple objects can be interleaved, they do 
not automatically interfere with each other in the way that representations based on 
local spatially — or temporally — contiguous receptive fields do. This means that 
grouping can occur by common asynchronous time structure rather than through 
synchrony, freeing the system of the temporal coordination all of the information related 
to a particular object. If the basic sensory representation itself has this "transparent" 
nature, then the segmentation and binding problem is no longer so formidible. Our 
impressive ability to separate auditory and visual objects would then be part and parcel 
of the kinds of temporal correlation-based representations on which they were based 
(Cariani, 1995; Cariani and Delgutte, 1996). 
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patterns.74 Since these patterns are also not rigidly synchronized to the 
stimulus (e.g. the patterns of Figure 8), virtually all traditional 
neurophysiological methods for analyzing spike trains and evoked 
potentials miss them. As a consequence, the extent of such temporal 
microstructure in the brain remains largely unexplored. 

If temporal microstructure is more ubiquitous than commonly 
thought, what implications would this hold for the brain as a signaling 
system? We can outline how a putative asynchronous signaling system 
might be organized using complex temporal pattern primitives.75 Rather 
than converting all time structure into spatial activation patterns, time 
structure would be the organizing currency of the system. Time 
structure would be preserved in sparse form, distributed over neurons in 
local ensembles. Information processing would be statistical-
mechanical in nature, implementing temporal correlation operations on 
the all-order interval statistics of larger ensembles of neurons.76 

In sensory maps time structure would exist embedded within the 
classical orderings of cortical neural maps, e.g. by retinal position 
(retinotopy), by body position (somatotopy), by cochlear position or 
frequency (tonotopy). Within local patches and across whole cortical 
fields the all-order interval statistics of neural populations would 
encode information concerning sensory qualities such as pitch, timbre, 
rhythm, spatial frequencies, and tactile texture. These would statistics 
provide running, parallel, local, multidimensional, autocorrelation-like 
representations. The outputs of local patches would be cross-correlated 
with each other, such that all-to-all cross-correlations of 
autocorrelations are computed.77 The canonical neural computations are 
carried out in feed-forward and recurrent temporal coincidence arrays 

                                                 
74 (Emmers, 1981; Strehler and Lestienne, 1986; Lestienne and Strehler, 1987; Lestienne 
et al., 1990; Abeles et al., 1993; Mountcastle, 1993; Vaadia et al., 1995; Lestienne, 1996) 
75 In terms of temporal mechanisms and timing nets, we are still working in an unformed 
realm that is not unlike the world of neural networks before Rashevsky, McCulloch, and 
Pitts. We are currently outlining what basic operations are possible, and what logics 
might be built up from their action.  
76 (John, 1972; John and Schwartz, 1978; John, 1988; Cariani, 1995; Cariani, 1997a) 
REM 
77 Analogous running spatial auto — and cross — correlation operations have been 
proposed for vision, e.g. (Kabrisky, 1966; Uttal, 1975; Uttal, 1988). Related, temporal 
correlation models for visual motion detection and texture are (Reichardt, 1961; 
Reitboeck, Pabst and Eckhorn, 1988; Pabst, Reitboeck and Eckhorn, 1989; Reitboeck, 
1989).  
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(Figure 4, bottom).78 These arrays in effect function as temporal sieves, 
propagating in their outputs those interspike intervals that are common 
to many inputs. In doing so, they extract those time patterns that are 
common to their inputs. If patches of cortical maps are interconnected 
by horizontal delay lines, then coincidence arrays extract and potentially 
reinforce commonalities of interval statistics present in corresponding 
frequency lamina or retinotopic patches. For example, different 
frequency regions driven by harmonically-related component 
frequencies would share common intervals at the fundamental, such that 
they would mutually reinforce each other. Iterated, reciprocal 
correlation operations then provide a basis for grouping by 
commonality of interval statistics rather than by strict synchrony. 
Perception thus would rely on the statistical mechanics of temporal 
coincidences between spikes rather than on specific ensembles of firing 
rates.79 The present temporal correlation account is related to the 
"synfire chains" proposed by Abeles80, except that functionally, the 
outputs of coincidence operations are temporal patterns (collective 
interval statistics) rather than ensembles of particular neurons firing in 
synchrony. 

Temporal coding permits different modes of signal multiplexing. 
Particular thalamic and cortical regions might also generate 
characteristic temporal signatures81 that signal the type of information 
being conveyed in the spike train, much in the same way that internet 
headers carry information about the nature of the message and its 
sender. If signal types can be encoded in characteristic time patterns 

                                                 
78 In the last year, we have begun to investigate the basic properties of these coincidence 
arrays (Figure 4, bottom) (Cariani, 1998a; Cariani, 1998b). (Longuet-Higgins, 1987; 
Longuet-Higgins, 1989) has shown how simple coincidence arrays can carry out 
convolutions in the time domain. These simple coincidence networks can be used to 
multiply autocorrelation functions, such that multidimensional comparisons can be made, 
and common periodicities extracted. 
79 Spatially-distributed temporal structures have been proposed in the past as functional 
organizations for the brain athat do not require specific point-to-point wiring, i.e. 
"switchboards" (Lashley, 1951; John, 1967a; John, 1967b; John, 1972; Thatcher and 
John, 1977; John and Schwartz, 1978; John, 1988). These alternatives have been 
ignored, in some part because of the current technological pre-eminence of digital and 
symbolic information processing strategies in computers, such as spatially-localized 
memory, sequential-hierarchical processing, and discrete local feature detectors. 
80 (Abeles, 1990) 
81 (Emmers, 1981) found thalamic spike patterns that consisted of onset bursts followed 
by later interspike intervals. He found that the latencies of the later intervals as well as 
the duration of the intervals themselves encoded the kind of somatosensory information 
that was being transmitted. 
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that serve as temporal "stamps" or "tags", then different kinds of time 
patterns can be sent over the same transmission lines, at different times 
or even interleaved together. This scheme is somewhat like "code-
division" multiplexing, a mode of signal multiplexing that is used in 
some cellular telephone and computer networks (Figure 6, bottom). In 
such networks receivers that can potentially receive all transmissions, 
but only respond to those messages that are relevant. In the context of 
neural assemblies, this might plausibly involve the selection of 
particular relative delay configurations, such that the assembly reacts 
differentially to particular time patterns.82 One then has potential 
response-specificity based on the presence of specific temporal 
patterns in the inputs, in the manner of a lock-and-key or a matched 
filter. Neurophysiological support for such adaptive timing mechanisms 
comes from conditioning experiments where associations are formed 
for time structured stimuli, e.g. different rhythms. It has been found in 
single neurons and population responses that there is an "assimilation of 
the rhythm" of the stimulus, such that temporal response properties 
change over the course of conditioning.83 Behaviorally, there is 
evidence from conditioning studies suggesting that the time courses of 
events, both rewarded and unrewarded, are stored in memory,84 and that 
cross-modal stimulus generalizations are readily made for stimuli 
having common time structure (e.g. 3 vs 10 Hz clicks, flashes, or 
shocks).85 These observations suggest very general facilities for storing 
and comparing time patterns. 

There are many potential advantages of coordinating large numbers 
of interacting neural processes through such asynchronous, complex 
time patterns. Because different kinds of information can be kept 
separate by virtue of time pattern alone, the function of preserving 
signal identity can be dissociated from particular labeled transmission 
lines, such that highly specific, point-to-point wiring is no longer 
strictly required. This in turn permits "broadcast" modes of coordination 
of neural assemblies,86 whereby time patterns are propagated widely 

                                                 
82 Or different neural assemblies can have distinct time courses of activation and de-
activation that can support processing of temporal and sequential patterns, as in D. G. 
MacKay's theory of cognitive timing nodes (MacKay, 1987). 
83 (John, 1967a; John, 1967b; Morrell, 1967; Thatcher and John, 1977; John and 
Schwartz, 1978) 
84 (Miller and Barnet, 1993) 
85 (John, 1967b) 
86 In his paper on adaptive timing networks (MacKay, 1962), D. M. MacKay (1961) 
pointed out that temporal patterns could be broadcast, a coordinative strategy he called 
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through the system. Memory traces are then themselves reverberating 
time patterns, albeit not necessarily synchronized at the level of whole 
neural populations. Circulating memory traces would then be 
temporally cross-correlated with incoming time patterns in primary and 
secondary sensory areas to facilitate the detection of particularly 
relevant information.87 The basic organization is a build-up, 
reverberatory process mediated through recurrent loops of reciprocal 
connections between cortical areas. In turn different sets of neural 
assemblies are activated according to their complex tunings that were 
acquired through previous experience. Thus the tunings represent the 
"relevance criteria" through which a given assembly can be weakly or 
strongly activated. When activated, such assemblies would be capable of 
producing characteristic stimulus-triggered time patterns. Unlike the 
pitch example above, where the emergent neural time pattern was a 
stimulus-driven time pattern, these internally-generated patterns need 
not be direct reflections of the time structure of the stimulus. Such 
patterns are seen in late evoked potentials in which characteristic 
temporal responses are released by particular stimuli.88 These kinds of 
neural tags or signatures would then be added to the time structure of 
the spike patterns that caused their production, either through 
synchronous concatenation or asynchronous combination (Figure 8). In 
effect the tags would become independent markers for combinations of 
stimulus properties89, and their addition to the stimulus representation 

                                                 
“the advertising principle.” Other contemporary broadcast-based, coordinative 
frameworks assume connectionist substrates (Baars, 1988) to account for global 
integration of information and the unity of conscious awareness. 
87 For example, rhythms set up temporal patterns of expectations (Jones, 1976) that 
might then be cross-correlated with incoming sensory signals to either build up or 
extinguish particular expectations. These mechanisms are similar in spirit to the 
adaptive-resonance models of Grossberg, e.g. (Grossberg, 1988; Grossberg, 1995), except 
that they are implemented using temporal codes and temporal correlation mechanisms 
rather than through channel-codes and spatial cross-correlation mechanisms. 
88 (John et al, 1973; Thatcher and John, 1977; John and Schwartz, 1978). 
89 This is not unlike the means by which major and minor peaks associated with the 
fundamental period (and the pitch that is heard) appeared in population-interval 
distributions when several harmonics were sounded together (Figure 6). The pattern of 
major and minor peaks arises from common periodicities present in the individual 
harmonics. Thus this “emergent” pattern is a property of the whole harmonic complex, 
with the major peaks corresponding to pitch and the minor peak patterns corresponding 
to timbre (Cariani, 1997b). The global pattern serves as a marker for the perceptual 
properties (pitch, timbre) that emerge when the individual harmonics are sounded 
together. The autocorrelation-interval pattern associated with the whole coexists with 
those associated with the individual harmonics, such that an elaboration of 
representation is carried out rather than information compression into simplified 
decisions (symbols). 
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would allow other neural assemblies to operate on them. Instead of 
discarding earlier, "lower-level" representations of the stimulus, as 
occurs in sequential, hierarchical processing, such time patterns would 
continue to be propagated throughout the system (Figure 7).  

 
 

Primary
interactions

Secondary
interactions

Higher-order, more
complex interactions

Figure 7. Time-coded broadcast schema for asynchronous, heterarchical global integration.

Incoming sensory signals

Creation of new primitive time patterns

Higher-order
interactions

 
As a result, unique aspects of associations (combinations of stimulus 
properties) can be represented by themselves without rendering the 
lower-level primitives inaccessible (Figure 8).   
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Figure 8.  Elaboration of signals through successive and recurrent interactions.  
In such a system new kinds of temporal tags would be constantly 

evolving, concomitant with the formation of new concepts. Such signal-
primitives would have many of the advantages of both traditional 
symbolic logics and distributed connectionist ones.90 Their production 
would be distributed across many neural elements, as in a connectionist 
network, yet the specific time patterns themselves would be unitary, as 
are the symbols of classical logics. Complex time codes thus could 
conceivably implement many of the same kinds of multidimensional, 
multivalent logics that are beginning to be actively explored in cognitive 
science.  
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